Cargando…
Comparative Study of Fuzzy Rule-Based Classifiers for Medical Applications
The use of machine learning in medical decision support systems can improve diagnostic accuracy and objectivity for clinical experts. In this study, we conducted a comparison of 16 different fuzzy rule-based algorithms applied to 12 medical datasets and real-world data. The results of this compariso...
Autor principal: | Czmil, Anna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9864287/ https://www.ncbi.nlm.nih.gov/pubmed/36679786 http://dx.doi.org/10.3390/s23020992 |
Ejemplares similares
-
Enhancing the Efficiency of the Interval-Valued Fuzzy Rule-Based Classifier with Tuning and Rule Selection
por: Sanz, José Antonio, et al.
Publicado: (2020) -
F-Classify: Fuzzy Rule Based Classification Method for Privacy Preservation of Multiple Sensitive Attributes
por: Attaullah, Hasina, et al.
Publicado: (2021) -
Towards Selecting Reducts for Building Decision Rules for Rule-Based Classifiers
por: Lazo-Cortés, Manuel S., et al.
Publicado: (2020) -
A Fuzzy Rule-Based System for Classification of Diabetes
por: Aamir, Khalid Mahmood, et al.
Publicado: (2021) -
Comparative study of ANN and fuzzy classifier for forecasting electrical activity of heart to diagnose Covid-19
por: Nivethitha, T., et al.
Publicado: (2021)