Cargando…
Semi-Supervised Segmentation Framework for Gastrointestinal Lesion Diagnosis in Endoscopic Images
Background: Accurate gastrointestinal (GI) lesion segmentation is crucial in diagnosing digestive tract diseases. An automatic lesion segmentation in endoscopic images is vital to relieving physicians’ burden and improving the survival rate of patients. However, pixel-wise annotations are highly int...
Autores principales: | Lonseko, Zenebe Markos, Du, Wenju, Adjei, Prince Ebenezer, Luo, Chengsi, Hu, Dingcan, Gan, Tao, Zhu, Linlin, Rao, Nini |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9864320/ https://www.ncbi.nlm.nih.gov/pubmed/36675779 http://dx.doi.org/10.3390/jpm13010118 |
Ejemplares similares
-
Self-Ensembling Co-Training Framework for Semi-Supervised COVID-19 CT Segmentation
Publicado: (2021) -
Revisiting Consistency for Semi-Supervised Semantic Segmentation †
por: Grubišić, Ivan, et al.
Publicado: (2023) -
Lidar–Camera Semi-Supervised Learning for Semantic Segmentation
por: Caltagirone, Luca, et al.
Publicado: (2021) -
Semi-supervised segmentation of retinoblastoma tumors in fundus images
por: Rahdar, Amir, et al.
Publicado: (2023) -
RCTE: A reliable and consistent temporal-ensembling framework for semi-supervised segmentation of COVID-19 lesions
por: Ding, Weiping, et al.
Publicado: (2021)