Cargando…
Flexible Stretchable, Dry-Resistant MXene Nanocomposite Conductive Hydrogel for Human Motion Monitoring
Conductive hydrogels with high electrical conductivity, ductility, and anti-dryness have promising applications in flexible wearable electronics. However, its potential applications in such a developing field are severely hampered by its extremely poor adaptability to cold or hot environmental condi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9864371/ https://www.ncbi.nlm.nih.gov/pubmed/36679131 http://dx.doi.org/10.3390/polym15020250 |
Sumario: | Conductive hydrogels with high electrical conductivity, ductility, and anti-dryness have promising applications in flexible wearable electronics. However, its potential applications in such a developing field are severely hampered by its extremely poor adaptability to cold or hot environmental conditions. In this research, an “organic solvent/water” composite conductive hydrogel is developed by introducing a binary organic solvent of EG/H(2)O into the system using a simple one-pot free radical polymerization method to create Ti(3)C(2)T(X) MXene nanosheet-reinforced polyvinyl alcohol/polyacrylamide covalently networked nanocomposite hydrogels (PAEM) with excellent flexibility and mechanical properties. The optimized PAEM contains 0.3 wt% MXene has excellent mechanical performance (tensile elongation of ~1033%) and an improved modulus of elasticity (0.14 MPa), a stable temperature tolerance from −50 to 40 °C, and a high gauge factor of 10.95 with a long storage period and response time of 110 ms. Additionally, it is worth noting that the elongation at break at −40 °C was maintained at around 50% of room temperature. This research will contribute to the development of flexible sensors for human-computer interaction, electronic skin, and human health monitoring. |
---|