Cargando…

Lifetime Predictions for High-Density Polyethylene under Creep: Experiments and Modeling

Observations are reported in uniaxial tensile tests with various strain rates, tensile relaxation tests with various strains, and tensile creep tests with various stresses on high-density polyethylene (HDPE) at room temperature. Constitutive equations are developed for the viscoelastoplastic respons...

Descripción completa

Detalles Bibliográficos
Autores principales: Drozdov, A. D., Høj Jermiin, R., de Claville Christiansen, J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9864414/
https://www.ncbi.nlm.nih.gov/pubmed/36679215
http://dx.doi.org/10.3390/polym15020334
Descripción
Sumario:Observations are reported in uniaxial tensile tests with various strain rates, tensile relaxation tests with various strains, and tensile creep tests with various stresses on high-density polyethylene (HDPE) at room temperature. Constitutive equations are developed for the viscoelastoplastic response of semicrystalline polymers. The model involves seven material parameters. Four of them are found by fitting observations in relaxation tests, while the others are determined by matching experimental creep curves. The predictive ability of the model is confirmed by comparing observations in independent short- and medium-term creep tests (with the duration up to several days) with the results of numerical analysis. The governing relations are applied to evaluate the lifetime of HDPE under creep conditions. An advantage of the proposed approach is that it predicts the stress-time-to-failure diagrams with account for the creep endurance limit.