Cargando…
Skin Lesion Analysis and Cancer Detection Based on Machine/Deep Learning Techniques: A Comprehensive Survey
The skin is the human body’s largest organ and its cancer is considered among the most dangerous kinds of cancer. Various pathological variations in the human body can cause abnormal cell growth due to genetic disorders. These changes in human skin cells are very dangerous. Skin cancer slowly develo...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9864434/ https://www.ncbi.nlm.nih.gov/pubmed/36676093 http://dx.doi.org/10.3390/life13010146 |
_version_ | 1784875583575949312 |
---|---|
author | Zafar, Mehwish Sharif, Muhammad Imran Sharif, Muhammad Irfan Kadry, Seifedine Bukhari, Syed Ahmad Chan Rauf, Hafiz Tayyab |
author_facet | Zafar, Mehwish Sharif, Muhammad Imran Sharif, Muhammad Irfan Kadry, Seifedine Bukhari, Syed Ahmad Chan Rauf, Hafiz Tayyab |
author_sort | Zafar, Mehwish |
collection | PubMed |
description | The skin is the human body’s largest organ and its cancer is considered among the most dangerous kinds of cancer. Various pathological variations in the human body can cause abnormal cell growth due to genetic disorders. These changes in human skin cells are very dangerous. Skin cancer slowly develops over further parts of the body and because of the high mortality rate of skin cancer, early diagnosis is essential. The visual checkup and the manual examination of the skin lesions are very tricky for the determination of skin cancer. Considering these concerns, numerous early recognition approaches have been proposed for skin cancer. With the fast progression in computer-aided diagnosis systems, a variety of deep learning, machine learning, and computer vision approaches were merged for the determination of medical samples and uncommon skin lesion samples. This research provides an extensive literature review of the methodologies, techniques, and approaches applied for the examination of skin lesions to date. This survey includes preprocessing, segmentation, feature extraction, selection, and classification approaches for skin cancer recognition. The results of these approaches are very impressive but still, some challenges occur in the analysis of skin lesions because of complex and rare features. Hence, the main objective is to examine the existing techniques utilized in the discovery of skin cancer by finding the obstacle that helps researchers contribute to future research. |
format | Online Article Text |
id | pubmed-9864434 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98644342023-01-22 Skin Lesion Analysis and Cancer Detection Based on Machine/Deep Learning Techniques: A Comprehensive Survey Zafar, Mehwish Sharif, Muhammad Imran Sharif, Muhammad Irfan Kadry, Seifedine Bukhari, Syed Ahmad Chan Rauf, Hafiz Tayyab Life (Basel) Review The skin is the human body’s largest organ and its cancer is considered among the most dangerous kinds of cancer. Various pathological variations in the human body can cause abnormal cell growth due to genetic disorders. These changes in human skin cells are very dangerous. Skin cancer slowly develops over further parts of the body and because of the high mortality rate of skin cancer, early diagnosis is essential. The visual checkup and the manual examination of the skin lesions are very tricky for the determination of skin cancer. Considering these concerns, numerous early recognition approaches have been proposed for skin cancer. With the fast progression in computer-aided diagnosis systems, a variety of deep learning, machine learning, and computer vision approaches were merged for the determination of medical samples and uncommon skin lesion samples. This research provides an extensive literature review of the methodologies, techniques, and approaches applied for the examination of skin lesions to date. This survey includes preprocessing, segmentation, feature extraction, selection, and classification approaches for skin cancer recognition. The results of these approaches are very impressive but still, some challenges occur in the analysis of skin lesions because of complex and rare features. Hence, the main objective is to examine the existing techniques utilized in the discovery of skin cancer by finding the obstacle that helps researchers contribute to future research. MDPI 2023-01-04 /pmc/articles/PMC9864434/ /pubmed/36676093 http://dx.doi.org/10.3390/life13010146 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Zafar, Mehwish Sharif, Muhammad Imran Sharif, Muhammad Irfan Kadry, Seifedine Bukhari, Syed Ahmad Chan Rauf, Hafiz Tayyab Skin Lesion Analysis and Cancer Detection Based on Machine/Deep Learning Techniques: A Comprehensive Survey |
title | Skin Lesion Analysis and Cancer Detection Based on Machine/Deep Learning Techniques: A Comprehensive Survey |
title_full | Skin Lesion Analysis and Cancer Detection Based on Machine/Deep Learning Techniques: A Comprehensive Survey |
title_fullStr | Skin Lesion Analysis and Cancer Detection Based on Machine/Deep Learning Techniques: A Comprehensive Survey |
title_full_unstemmed | Skin Lesion Analysis and Cancer Detection Based on Machine/Deep Learning Techniques: A Comprehensive Survey |
title_short | Skin Lesion Analysis and Cancer Detection Based on Machine/Deep Learning Techniques: A Comprehensive Survey |
title_sort | skin lesion analysis and cancer detection based on machine/deep learning techniques: a comprehensive survey |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9864434/ https://www.ncbi.nlm.nih.gov/pubmed/36676093 http://dx.doi.org/10.3390/life13010146 |
work_keys_str_mv | AT zafarmehwish skinlesionanalysisandcancerdetectionbasedonmachinedeeplearningtechniquesacomprehensivesurvey AT sharifmuhammadimran skinlesionanalysisandcancerdetectionbasedonmachinedeeplearningtechniquesacomprehensivesurvey AT sharifmuhammadirfan skinlesionanalysisandcancerdetectionbasedonmachinedeeplearningtechniquesacomprehensivesurvey AT kadryseifedine skinlesionanalysisandcancerdetectionbasedonmachinedeeplearningtechniquesacomprehensivesurvey AT bukharisyedahmadchan skinlesionanalysisandcancerdetectionbasedonmachinedeeplearningtechniquesacomprehensivesurvey AT raufhafiztayyab skinlesionanalysisandcancerdetectionbasedonmachinedeeplearningtechniquesacomprehensivesurvey |