Cargando…
Conditional Generative Adversarial Networks for Data Augmentation of a Neonatal Image Dataset
In today’s neonatal intensive care units, monitoring vital signs such as heart rate and respiration is fundamental for neonatal care. However, the attached sensors and electrodes restrict movement and can cause medical-adhesive-related skin injuries due to the immature skin of preterm infants, which...
Autores principales: | Lyra, Simon, Mustafa, Arian, Rixen, Jöran, Borik, Stefan, Lueken, Markus, Leonhardt, Steffen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9864455/ https://www.ncbi.nlm.nih.gov/pubmed/36679796 http://dx.doi.org/10.3390/s23020999 |
Ejemplares similares
-
Multi-modal body part segmentation of infants using deep learning
por: Voss, Florian, et al.
Publicado: (2023) -
Camera fusion for real-time temperature monitoring of neonates using deep learning
por: Lyra, Simon, et al.
Publicado: (2022) -
Seismic Data Augmentation Based on Conditional Generative Adversarial Networks
por: Li, Yuanming, et al.
Publicado: (2020) -
On the spatial phase distribution of cutaneous low-frequency perfusion oscillations
por: Borik, Stefan, et al.
Publicado: (2022) -
LHC analysis-specific datasets with Generative Adversarial Networks
por: Hashemi, Bobak, et al.
Publicado: (2019)