Cargando…
Classification of Depression and Its Severity Based on Multiple Audio Features Using a Graphical Convolutional Neural Network
Audio features are physical features that reflect single or complex coordinated movements in the vocal organs. Hence, in speech-based automatic depression classification, it is critical to consider the relationship among audio features. Here, we propose a deep learning-based classification model for...
Autores principales: | Ishimaru, Momoko, Okada, Yoshifumi, Uchiyama, Ryunosuke, Horiguchi, Ryo, Toyoshima, Itsuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9864471/ https://www.ncbi.nlm.nih.gov/pubmed/36674342 http://dx.doi.org/10.3390/ijerph20021588 |
Ejemplares similares
-
A New Regression Model for Depression Severity Prediction Based on Correlation among Audio Features Using a Graph Convolutional Neural Network
por: Ishimaru, Momoko, et al.
Publicado: (2023) -
Multi-Input Speech Emotion Recognition Model Using Mel Spectrogram and GeMAPS
por: Toyoshima, Itsuki, et al.
Publicado: (2023) -
Identifying Voice Individuality Unaffected by Age-Related Voice Changes during Adolescence
por: Suzuki, Natsumi, et al.
Publicado: (2022) -
Benchmarking Audio Signal Representation Techniques for Classification with Convolutional Neural Networks
por: Sharan, Roneel V., et al.
Publicado: (2021) -
End-to-End Convolutional Neural Network Model to Detect and Localize Myocardial Infarction Using 12-Lead ECG Images without Preprocessing
por: Uchiyama, Ryunosuke, et al.
Publicado: (2022)