Cargando…
Deletion of Spinophilin Promotes White Adipocyte Browning
Browning of white adipose tissue (WAT) is suggested as a promising therapeutic approach to induce energy expenditure and counteract obesity and its associated complications. Systemic depletion of spinophilin (SPL) increases metabolism and improves energy balance in mice. In this study, we explored t...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9864510/ https://www.ncbi.nlm.nih.gov/pubmed/36678589 http://dx.doi.org/10.3390/ph16010091 |
_version_ | 1784875602093801472 |
---|---|
author | Gou, Wenyu Wei, Hua Swaby, Lindsay Green, Erica Wang, Hongjun |
author_facet | Gou, Wenyu Wei, Hua Swaby, Lindsay Green, Erica Wang, Hongjun |
author_sort | Gou, Wenyu |
collection | PubMed |
description | Browning of white adipose tissue (WAT) is suggested as a promising therapeutic approach to induce energy expenditure and counteract obesity and its associated complications. Systemic depletion of spinophilin (SPL) increases metabolism and improves energy balance in mice. In this study, we explored the mechanistic insight of SPL action in WAT browning. Gene expression and mitochondria tracker staining showed that visceral white adipose tissue (vWAT) harvested from SPL KO mice had a higher expression of classic browning-related genes, including uncoupling protein 1 (UCP1), Cell death inducing DFFA like effector A (CIDEA) and PR domain containing 16 (PRDM16), as well as a higher mtDNA level compared to vWAT from wild type (WT) control mice. When adipogenesis was induced in pre-adipocytes harvested from KO and WT mice ex vivo using the PPAR-γ agonist rosiglitazone (Rosi), SPL KO cells showed increased browning marker gene expression and mitochondria function compared to cells from WT mice. Increased PPAR-γ protein expression and nucleus retention in vWAT from SPL KO mice after Rosi treatment were also observed. The effect of SPL on vWAT browning was further confirmed in vivo when WT and KO mice were treated with Rosi. As a result, SPL KO mice lost body weight, which was associated with increased expression of browning maker genes in vWAT. In summary, our data demonstrate the critical role of SPL in the regulation of WAT browning. |
format | Online Article Text |
id | pubmed-9864510 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98645102023-01-22 Deletion of Spinophilin Promotes White Adipocyte Browning Gou, Wenyu Wei, Hua Swaby, Lindsay Green, Erica Wang, Hongjun Pharmaceuticals (Basel) Article Browning of white adipose tissue (WAT) is suggested as a promising therapeutic approach to induce energy expenditure and counteract obesity and its associated complications. Systemic depletion of spinophilin (SPL) increases metabolism and improves energy balance in mice. In this study, we explored the mechanistic insight of SPL action in WAT browning. Gene expression and mitochondria tracker staining showed that visceral white adipose tissue (vWAT) harvested from SPL KO mice had a higher expression of classic browning-related genes, including uncoupling protein 1 (UCP1), Cell death inducing DFFA like effector A (CIDEA) and PR domain containing 16 (PRDM16), as well as a higher mtDNA level compared to vWAT from wild type (WT) control mice. When adipogenesis was induced in pre-adipocytes harvested from KO and WT mice ex vivo using the PPAR-γ agonist rosiglitazone (Rosi), SPL KO cells showed increased browning marker gene expression and mitochondria function compared to cells from WT mice. Increased PPAR-γ protein expression and nucleus retention in vWAT from SPL KO mice after Rosi treatment were also observed. The effect of SPL on vWAT browning was further confirmed in vivo when WT and KO mice were treated with Rosi. As a result, SPL KO mice lost body weight, which was associated with increased expression of browning maker genes in vWAT. In summary, our data demonstrate the critical role of SPL in the regulation of WAT browning. MDPI 2023-01-08 /pmc/articles/PMC9864510/ /pubmed/36678589 http://dx.doi.org/10.3390/ph16010091 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gou, Wenyu Wei, Hua Swaby, Lindsay Green, Erica Wang, Hongjun Deletion of Spinophilin Promotes White Adipocyte Browning |
title | Deletion of Spinophilin Promotes White Adipocyte Browning |
title_full | Deletion of Spinophilin Promotes White Adipocyte Browning |
title_fullStr | Deletion of Spinophilin Promotes White Adipocyte Browning |
title_full_unstemmed | Deletion of Spinophilin Promotes White Adipocyte Browning |
title_short | Deletion of Spinophilin Promotes White Adipocyte Browning |
title_sort | deletion of spinophilin promotes white adipocyte browning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9864510/ https://www.ncbi.nlm.nih.gov/pubmed/36678589 http://dx.doi.org/10.3390/ph16010091 |
work_keys_str_mv | AT gouwenyu deletionofspinophilinpromoteswhiteadipocytebrowning AT weihua deletionofspinophilinpromoteswhiteadipocytebrowning AT swabylindsay deletionofspinophilinpromoteswhiteadipocytebrowning AT greenerica deletionofspinophilinpromoteswhiteadipocytebrowning AT wanghongjun deletionofspinophilinpromoteswhiteadipocytebrowning |