Cargando…

A Low-Profile Antenna for On-Body and Off-Body Applications in the Lower and Upper ISM and WLAN Bands

The article presents a Co-planar Waveguide (CPW) fed antenna of a low-profile, simple geometry, and compact size operating at the dual band for ISM and WLAN applications for 5G communication devices. The antenna has a small size of 30 mm × 18 mm × 0.79 mm and is realized using Rogers RT/Duroid 5880...

Descripción completa

Detalles Bibliográficos
Autores principales: Ali, Esraa Mousa, Awan, Wahaj Abbas, Naqvi, Syeda Iffat, Alzaidi, Mohammed S., Alzahrani, Abdullah, Elkamchouchi, Dalia H., Falcone, Francisco, Alharbi, Turki E. A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9864515/
https://www.ncbi.nlm.nih.gov/pubmed/36679506
http://dx.doi.org/10.3390/s23020709
Descripción
Sumario:The article presents a Co-planar Waveguide (CPW) fed antenna of a low-profile, simple geometry, and compact size operating at the dual band for ISM and WLAN applications for 5G communication devices. The antenna has a small size of 30 mm × 18 mm × 0.79 mm and is realized using Rogers RT/Duroid 5880 substrate. The proposed dual-band antenna contains a CPW feedline along with the triangular patch. Later on, various stubs are loaded to obtain optimal results. The proposed antenna offers a dual band at 2.4 and 5.4 GHz while covering the impedance bandwidths of 2.25–2.8 GHz for ISM and 5.45–5.65 GHz for WLAN applications, respectively. The proposed antenna design is studied and analyzed using the Electromagnetic (EM) High-Frequency Structure Simulator (HFSSv9) tool, and a hardware prototype is fabricated to verify the simulated results. As the antenna is intended for on-body applications, therefore, Specific Absorption Rate (SAR) analysis is carried out to investigate the Electromagnetic effects of the antenna on the human body. Moreover, a comparison between the proposed dual-band antenna and other relevant works in the literature is presented. The results and comparison of the proposed work with other literary works validate that the proposed dual-band antenna is suitable for future 5G devices working in Industrial, Scientific, Medical (ISM), and Wireless Local Area Network (WLAN) bands.