Cargando…
Empirical Comparison of Imputation Methods for Multivariate Missing Data in Public Health
Sample estimates derived from data with missing values may be unreliable and may negatively impact the inferences that researchers make about the underlying population due to nonresponse bias. As a result, imputation is often preferred to listwise deletion in handling multivariate missing data. In t...
Autores principales: | Pan, Steven, Chen, Sixia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9864541/ https://www.ncbi.nlm.nih.gov/pubmed/36674279 http://dx.doi.org/10.3390/ijerph20021524 |
Ejemplares similares
-
Imputation of missing genotypes: an empirical evaluation of IMPUTE
por: Zhao, Zhenming, et al.
Publicado: (2008) -
On multivariate imputation and forecasting of decadal wind speed missing data
por: Wesonga, Ronald
Publicado: (2015) -
Missing Data and Imputation Methods
por: Schober, Patrick, et al.
Publicado: (2020) -
Comparison of imputation methods for missing laboratory data in medicine
por: Waljee, Akbar K, et al.
Publicado: (2013) -
Imputing missing genotypes: effects of methods and patterns of missing data
por: Ogut, Funda, et al.
Publicado: (2011)