Cargando…

Charophytes (Charophyceae, Charales) of South Kazakhstan: Diversity, Distribution, and Tentative Red List

The presented research was conducted during 2019–2022 in south and southeast Kazakhstan to document the species richness, distribution, and ecology of charophytes (Characeae) as a first step towards to estimate the need for species protection. Across the 54 sites, we found ten species and one variet...

Descripción completa

Detalles Bibliográficos
Autores principales: Nurashov, Satbay, Jumakhanova, Gaukhar, Barinova, Sophia, Romanov, Roman, Sametova, Elmira, Jiyenbekov, Aibek, Shalgimbayeva, Saule, Smith, Thomas Edward
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9864562/
https://www.ncbi.nlm.nih.gov/pubmed/36679081
http://dx.doi.org/10.3390/plants12020368
Descripción
Sumario:The presented research was conducted during 2019–2022 in south and southeast Kazakhstan to document the species richness, distribution, and ecology of charophytes (Characeae) as a first step towards to estimate the need for species protection. Across the 54 sites, we found ten species and one variety. Chara vulgaris Linnaeus and C. contraria A.Braun ex Kützing were the most common species, followed by C. canescens Loiseleur, C. kirghisorum C. F. Lessing, C. tomentosa Linnaeus, C. dominii J. Vilhelm, C. globata W. Migula, Nitellopsis obtusa (Desvaux) J. Groves, and Nitella hyalina (De Candolle) C. Agardh. The list of localities for each species was compiled. The distribution of each taxon was mapped in relations to the ecoregions studied. The two most frequent species were found in a wide spectrum of ecoregions, whereas all other species occurred in only a few regions in Kazakhstan. The Kaskelen River Valley had the most sampled sites with the highest number of co-occurring species (up to five together). Statistical maps were plotted in attempt to outline key environmental variables explaining the distribution of each species. A comparison of species and environmental variables distribution maps lets us assume that C. vulgaris prefers low altitude habitats with higher water temperatures, organic enrichments, and color, but low oxygen and pH. Other species prefer clear, alkaline, organically unpolluted, and well-oxygenated waters in lowland habitats. The redundancy detrended analysis (RDA) defined pH and altitude as negative factors for Nitellopsis obtusa whereas an increase in water temperature was positive. Altitude and water temperatures affected Chara contraria positively while altitude negatively influenced the rare species: Chara tomentosa, C. kirghisorum, and C. dominii. The matK sequences were obtained for C. contraria and C. vulgaris to confirm their identity according to morphological traits and to compare populations of C. gymnophylla and C. vulgaris from an arid region in Israel. Our data allowed for the preparation of a tentative red list from the study region. One species was recognized as endangered, four species and one variety as vulnerable, and two species as least concern. There was insufficient data to determine the status of two species and one variety.