Cargando…
Sleep Spindle Characteristics and Relationship with Memory Ability in Patients with Obstructive Sleep Apnea-Hypopnea Syndrome
Obstructive sleep apnea syndrome (OSAS) causes intermittent hypoxia and sleep disruption in the brain, resulting in cognitive dysfunction, but its pathogenesis is unclear. The sleep spindle wave is a transient neural event involved in sleep memory consolidation and synaptic plasticity. This study ai...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9864739/ https://www.ncbi.nlm.nih.gov/pubmed/36675563 http://dx.doi.org/10.3390/jcm12020634 |
Sumario: | Obstructive sleep apnea syndrome (OSAS) causes intermittent hypoxia and sleep disruption in the brain, resulting in cognitive dysfunction, but its pathogenesis is unclear. The sleep spindle wave is a transient neural event involved in sleep memory consolidation and synaptic plasticity. This study aimed to investigate the characteristics of sleep spindle activity and its relationship with memory ability in patients with OSAS. A total of 119 patients, who were divided into the OSAS group (n = 59, AHI ≥ 15) and control group (n = 60, AHI < 15) according to the Apnea Hypopnea Index (AHI), were enrolled and underwent polysomnography. Power spectral density (PSD) and omega complexity were used to analyze the characteristics of single and different brain regions of sleep spindles. Memory-related cognitive functions were assessed in all subjects, including logical memory, digit ordering, pattern recognition, spatial recognition and spatial working memory. The spindle PSD of the OSAS group was significantly slower than the control group, regardless of the slow, fast, or total spindle. The complexity of the spindles in the prefrontal and central region decreased significantly, whereas it increased in the occipital region. Sleep spindle PSD was positively correlated with logical memory and working memory. Spindle complexity was positively correlated with immediate logical and visual memory in the prefrontal region and positively correlated with immediate/delayed logical and working memory in the central region. In contrast, spindle complexity in the occipital region negatively correlated with delayed logical memory. Spindle hyperconnectivity in the prefrontal and central regions underlies declines in logical, visual and working memory and weak connections in the occipital spindles underlie the decline in delayed logical memory. |
---|