Cargando…
Enterococcus faecalis NADH Peroxidase-Defective Mutants Stain Falsely in Colony Zymogram Assay for Extracellular Electron Transfer to Ferric Ions
Enterococcus faecalis cells can reduce ferric ions and other electron acceptors by extracellular electron transfer (EET). To find mutants with enhanced or defective EET, strain OG1RF with random transposon insertions in the chromosome was screened for ferric reductase activity by colony zymogram sta...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9864754/ https://www.ncbi.nlm.nih.gov/pubmed/36677398 http://dx.doi.org/10.3390/microorganisms11010106 |
_version_ | 1784875662751825920 |
---|---|
author | Hederstedt, Lars |
author_facet | Hederstedt, Lars |
author_sort | Hederstedt, Lars |
collection | PubMed |
description | Enterococcus faecalis cells can reduce ferric ions and other electron acceptors by extracellular electron transfer (EET). To find mutants with enhanced or defective EET, strain OG1RF with random transposon insertions in the chromosome was screened for ferric reductase activity by colony zymogram staining using the chromogenic ferrous-chelating compound Ferrozine. The screen revealed npr, eetB, and ndh3 mutants. The aberrant ferric reductase phenotype of Npr (NADH peroxidase)-defective mutants was found to be a property of colonies and not apparent with washed cells grown in liquid culture. EetB- and Ndh3-defective mutants, in contrast, consistently showed low ferric reductase activity. It is concluded that colony zymogram staining for ferric reductase activity using Ferrozine can be misleading, especially through false negative results. It is suggested that hydrogen peroxide produced in the colony quenches the zymogram staining. In addition, it is demonstrated that the negative effect of heme on EET to ferric ion in E. faecalis is relieved by cytochrome bd deficiency. The findings can help to identify bacteria with EET ability and contribute to our understanding of EET in Gram-positive bacteria and the physiology of E. faecalis. |
format | Online Article Text |
id | pubmed-9864754 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98647542023-01-22 Enterococcus faecalis NADH Peroxidase-Defective Mutants Stain Falsely in Colony Zymogram Assay for Extracellular Electron Transfer to Ferric Ions Hederstedt, Lars Microorganisms Article Enterococcus faecalis cells can reduce ferric ions and other electron acceptors by extracellular electron transfer (EET). To find mutants with enhanced or defective EET, strain OG1RF with random transposon insertions in the chromosome was screened for ferric reductase activity by colony zymogram staining using the chromogenic ferrous-chelating compound Ferrozine. The screen revealed npr, eetB, and ndh3 mutants. The aberrant ferric reductase phenotype of Npr (NADH peroxidase)-defective mutants was found to be a property of colonies and not apparent with washed cells grown in liquid culture. EetB- and Ndh3-defective mutants, in contrast, consistently showed low ferric reductase activity. It is concluded that colony zymogram staining for ferric reductase activity using Ferrozine can be misleading, especially through false negative results. It is suggested that hydrogen peroxide produced in the colony quenches the zymogram staining. In addition, it is demonstrated that the negative effect of heme on EET to ferric ion in E. faecalis is relieved by cytochrome bd deficiency. The findings can help to identify bacteria with EET ability and contribute to our understanding of EET in Gram-positive bacteria and the physiology of E. faecalis. MDPI 2022-12-31 /pmc/articles/PMC9864754/ /pubmed/36677398 http://dx.doi.org/10.3390/microorganisms11010106 Text en © 2022 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hederstedt, Lars Enterococcus faecalis NADH Peroxidase-Defective Mutants Stain Falsely in Colony Zymogram Assay for Extracellular Electron Transfer to Ferric Ions |
title | Enterococcus faecalis NADH Peroxidase-Defective Mutants Stain Falsely in Colony Zymogram Assay for Extracellular Electron Transfer to Ferric Ions |
title_full | Enterococcus faecalis NADH Peroxidase-Defective Mutants Stain Falsely in Colony Zymogram Assay for Extracellular Electron Transfer to Ferric Ions |
title_fullStr | Enterococcus faecalis NADH Peroxidase-Defective Mutants Stain Falsely in Colony Zymogram Assay for Extracellular Electron Transfer to Ferric Ions |
title_full_unstemmed | Enterococcus faecalis NADH Peroxidase-Defective Mutants Stain Falsely in Colony Zymogram Assay for Extracellular Electron Transfer to Ferric Ions |
title_short | Enterococcus faecalis NADH Peroxidase-Defective Mutants Stain Falsely in Colony Zymogram Assay for Extracellular Electron Transfer to Ferric Ions |
title_sort | enterococcus faecalis nadh peroxidase-defective mutants stain falsely in colony zymogram assay for extracellular electron transfer to ferric ions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9864754/ https://www.ncbi.nlm.nih.gov/pubmed/36677398 http://dx.doi.org/10.3390/microorganisms11010106 |
work_keys_str_mv | AT hederstedtlars enterococcusfaecalisnadhperoxidasedefectivemutantsstainfalselyincolonyzymogramassayforextracellularelectrontransfertoferricions |