Cargando…
Numerical and Experimental Study of a Lattice Structure for Orthopedic Applications
Prosthetic reconstructions provide anatomical reconstruction to replace bones and joints. However, these operations have a high number of short- and long-term complications. One of the main problems in surgery is that the implant remains in the body after the operation. The solution to this problem...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9864782/ https://www.ncbi.nlm.nih.gov/pubmed/36676480 http://dx.doi.org/10.3390/ma16020744 |
_version_ | 1784875669972320256 |
---|---|
author | Kharin, Nikita Bolshakov, Pavel Kuchumov, Alex G. |
author_facet | Kharin, Nikita Bolshakov, Pavel Kuchumov, Alex G. |
author_sort | Kharin, Nikita |
collection | PubMed |
description | Prosthetic reconstructions provide anatomical reconstruction to replace bones and joints. However, these operations have a high number of short- and long-term complications. One of the main problems in surgery is that the implant remains in the body after the operation. The solution to this problem is to use biomaterial for the implant, but biomaterial does not have the required strength characteristics. The implant must also have a mesh-like structure so that the bone can grow into the implant. The additive manufacturing process is ideal for the production of such a structure. The study deals with the correlation between different prosthetic structures, namely, the relationship between geometry, mechanical properties and biological additivity. The main challenge is to design an endoprosthesis that will mimic the geometric structure of bone and also meet the conditions of strength, hardness and stiffness. In order to match the above factors, it is necessary to develop appropriate algorithms. The main objective of this study is to augment the algorithm to ensure minimum structural weight without changing the strength characteristics of the lattice endoprosthesis of long bones. The iterative augmentation process of the algorithm was implemented by removing low-loaded ribs. A low-loaded rib is a rib with a maximum stress that is less than the threshold stress. Values within the range (10, 13, 15, 16, 17, 18, 19 and 20 MPa) were taken as the threshold stress. The supplement to the algorithm was applied to the initial structure and the designed structure at threshold stresses σ(f) = 10, 13, 15, 16, 17, 18, 19 and 20 MPa. A Pareto diagram for maximum stress and the number of ribs is plotted for all cases of the design: original, engineered and lightened structures. The most optimal was the designed “lightweight” structure under the condition σ(f) = 17 MPa. The maximum stress was 147.48 MPa, and the number of ribs was 741. Specimens were manufactured using additive manufacturing and then tested for four-point bending. |
format | Online Article Text |
id | pubmed-9864782 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98647822023-01-22 Numerical and Experimental Study of a Lattice Structure for Orthopedic Applications Kharin, Nikita Bolshakov, Pavel Kuchumov, Alex G. Materials (Basel) Article Prosthetic reconstructions provide anatomical reconstruction to replace bones and joints. However, these operations have a high number of short- and long-term complications. One of the main problems in surgery is that the implant remains in the body after the operation. The solution to this problem is to use biomaterial for the implant, but biomaterial does not have the required strength characteristics. The implant must also have a mesh-like structure so that the bone can grow into the implant. The additive manufacturing process is ideal for the production of such a structure. The study deals with the correlation between different prosthetic structures, namely, the relationship between geometry, mechanical properties and biological additivity. The main challenge is to design an endoprosthesis that will mimic the geometric structure of bone and also meet the conditions of strength, hardness and stiffness. In order to match the above factors, it is necessary to develop appropriate algorithms. The main objective of this study is to augment the algorithm to ensure minimum structural weight without changing the strength characteristics of the lattice endoprosthesis of long bones. The iterative augmentation process of the algorithm was implemented by removing low-loaded ribs. A low-loaded rib is a rib with a maximum stress that is less than the threshold stress. Values within the range (10, 13, 15, 16, 17, 18, 19 and 20 MPa) were taken as the threshold stress. The supplement to the algorithm was applied to the initial structure and the designed structure at threshold stresses σ(f) = 10, 13, 15, 16, 17, 18, 19 and 20 MPa. A Pareto diagram for maximum stress and the number of ribs is plotted for all cases of the design: original, engineered and lightened structures. The most optimal was the designed “lightweight” structure under the condition σ(f) = 17 MPa. The maximum stress was 147.48 MPa, and the number of ribs was 741. Specimens were manufactured using additive manufacturing and then tested for four-point bending. MDPI 2023-01-12 /pmc/articles/PMC9864782/ /pubmed/36676480 http://dx.doi.org/10.3390/ma16020744 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kharin, Nikita Bolshakov, Pavel Kuchumov, Alex G. Numerical and Experimental Study of a Lattice Structure for Orthopedic Applications |
title | Numerical and Experimental Study of a Lattice Structure for Orthopedic Applications |
title_full | Numerical and Experimental Study of a Lattice Structure for Orthopedic Applications |
title_fullStr | Numerical and Experimental Study of a Lattice Structure for Orthopedic Applications |
title_full_unstemmed | Numerical and Experimental Study of a Lattice Structure for Orthopedic Applications |
title_short | Numerical and Experimental Study of a Lattice Structure for Orthopedic Applications |
title_sort | numerical and experimental study of a lattice structure for orthopedic applications |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9864782/ https://www.ncbi.nlm.nih.gov/pubmed/36676480 http://dx.doi.org/10.3390/ma16020744 |
work_keys_str_mv | AT kharinnikita numericalandexperimentalstudyofalatticestructurefororthopedicapplications AT bolshakovpavel numericalandexperimentalstudyofalatticestructurefororthopedicapplications AT kuchumovalexg numericalandexperimentalstudyofalatticestructurefororthopedicapplications |