Cargando…
Predicting of Daily PM(2.5) Concentration Employing Wavelet Artificial Neural Networks Based on Meteorological Elements in Shanghai, China
Anthropogenic sources of fine particulate matter (PM(2.5)) threaten ecosystem security, human health and sustainable development. The accuracy prediction of daily PM(2.5) concentration can give important information for people to reduce their exposure. Artificial neural networks (ANNs) and wavelet-A...
Autores principales: | Guo, Qingchun, He, Zhenfang, Wang, Zhaosheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9864912/ https://www.ncbi.nlm.nih.gov/pubmed/36668777 http://dx.doi.org/10.3390/toxics11010051 |
Ejemplares similares
-
Effects of Meteorological Conditions on PM(2.5) Concentrations in Nagasaki, Japan
por: Wang, Jianhua, et al.
Publicado: (2015) -
Spatial Variation of the Relationship between PM(2.5) Concentrations and Meteorological Parameters in China
por: Lin, Gang, et al.
Publicado: (2015) -
A spatiotemporal XGBoost model for PM(2.5) concentration prediction and its application in Shanghai
por: Wang, Zidong, et al.
Publicado: (2023) -
Long-term variations in PM(2.5) concentrations under changing meteorological conditions in Taiwan
por: Cheng, Fang-Yi, et al.
Publicado: (2019) -
Ensemble-based classification approach for PM2.5 concentration forecasting using meteorological data
por: Saminathan, S., et al.
Publicado: (2023)