Cargando…
Point Cloud Deep Learning Network Based on Balanced Sampling and Hybrid Pooling
The automatic semantic segmentation of point cloud data is important for applications in the fields of machine vision, virtual reality, and smart cities. The processing capability of the point cloud segmentation method with PointNet++ as the baseline needs to be improved for extremely imbalanced poi...
Autores principales: | Deng, Chunyuan, Peng, Zhenyun, Chen, Zhencheng, Chen, Ruixing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9864937/ https://www.ncbi.nlm.nih.gov/pubmed/36679776 http://dx.doi.org/10.3390/s23020981 |
Ejemplares similares
-
Learning Representative Features by Deep Attention Network for 3D Point Cloud Registration
por: Xia, Xiaokai, et al.
Publicado: (2023) -
Deep Learning on Point Clouds and Its Application: A Survey
por: Liu, Weiping, et al.
Publicado: (2019) -
Robotics Dexterous Grasping: The Methods Based on Point Cloud and Deep Learning
por: Duan, Haonan, et al.
Publicado: (2021) -
TransNet: Transformer-Based Point Cloud Sampling Network
por: Lee, Hookyung, et al.
Publicado: (2023) -
LiDAR Point Cloud Recognition of Overhead Catenary System with Deep Learning
por: Lin, Shuai, et al.
Publicado: (2020)