Cargando…
Lightweight Machine-Learning Model for Efficient Design of Graphene-Based Microwave Metasurfaces for Versatile Absorption Performance
Graphene, as a widely used nanomaterial, has shown great flexibility in designing optically transparent microwave metasurfaces with broadband absorption. However, the design of graphene-based microwave metasurfaces relies on cumbersome parameter sweeping as well as the expertise of researchers. In t...
Autores principales: | Chen, Nengfu, He, Chong, Zhu, Weiren |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9864972/ https://www.ncbi.nlm.nih.gov/pubmed/36678082 http://dx.doi.org/10.3390/nano13020329 |
Ejemplares similares
-
Graphene-based metasurface solar absorber design with absorption prediction using machine learning
por: Parmar, Juveriya, et al.
Publicado: (2022) -
Broadband Microwave Absorption by Logarithmic Spiral Metasurface
por: Wang, Shubo, et al.
Publicado: (2019) -
Lightweight Co(3)O(4)/CC Composites with High Microwave Absorption Performance
por: An, Bing, et al.
Publicado: (2023) -
Metasurfaces for efficient digital noise absorption
por: Aihara, Ryoya, et al.
Publicado: (2020) -
Porous Graphene Microflowers for High-Performance Microwave Absorption
por: Chen, Chen, et al.
Publicado: (2017)