Cargando…

Quantitative Gait Feature Assessment on Two-Dimensional Body Axis Projection Planes Converted from Three-Dimensional Coordinates Estimated with a Deep Learning Smartphone App

To assess pathological gaits quantitatively, three-dimensional coordinates estimated with a deep learning model were converted into body axis plane projections. First, 15 healthy volunteers performed four gait patterns; that is, normal, shuffling, short-stepped, and wide-based gaits, with the Three-...

Descripción completa

Detalles Bibliográficos
Autores principales: Yamada, Shigeki, Aoyagi, Yukihiko, Iseki, Chifumi, Kondo, Toshiyuki, Kobayashi, Yoshiyuki, Ueda, Shigeo, Mori, Keisuke, Fukami, Tadanori, Tanikawa, Motoki, Mase, Mitsuhito, Hoshimaru, Minoru, Ishikawa, Masatsune, Ohta, Yasuyuki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865115/
https://www.ncbi.nlm.nih.gov/pubmed/36679412
http://dx.doi.org/10.3390/s23020617
Descripción
Sumario:To assess pathological gaits quantitatively, three-dimensional coordinates estimated with a deep learning model were converted into body axis plane projections. First, 15 healthy volunteers performed four gait patterns; that is, normal, shuffling, short-stepped, and wide-based gaits, with the Three-Dimensional Pose Tracker for Gait Test (TDPT-GT) application. Second, gaits of 47 patients with idiopathic normal pressure hydrocephalus (iNPH) and 92 healthy elderly individuals in the Takahata cohort were assessed with the TDPT-GT. Two-dimensional relative coordinates were calculated from the three-dimensional coordinates by projecting the sagittal, coronal, and axial planes. Indices of the two-dimensional relative coordinates associated with a pathological gait were comprehensively explored. The candidate indices for the shuffling gait were the angle range of the hip joint < 30° and relative vertical amplitude of the heel < 0.1 on the sagittal projection plane. For the short-stepped gait, the angle range of the knee joint < 45° on the sagittal projection plane was a candidate index. The candidate index for the wide-based gait was the leg outward shift > 0.1 on the axial projection plane. In conclusion, the two-dimensional coordinates on the body axis projection planes calculated from the 3D relative coordinates estimated by the TDPT-GT application enabled the quantification of pathological gait features.