Cargando…
The Effect of PEGylated Graphene Oxide Nanoparticles on the Th17-Polarization of Activated T Helpers
We investigated the direct effect of PEGylated graphene oxide (P-GO) nanoparticles on the differentiation, viability, and cytokine profile of activated T helper type 17 (Th17) in vitro. The subject of the study were cultures of “naive” T-helpers (CD4+) isolated by immunomagnetic separation and polar...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865146/ https://www.ncbi.nlm.nih.gov/pubmed/36676614 http://dx.doi.org/10.3390/ma16020877 |
Sumario: | We investigated the direct effect of PEGylated graphene oxide (P-GO) nanoparticles on the differentiation, viability, and cytokine profile of activated T helper type 17 (Th17) in vitro. The subject of the study were cultures of “naive” T-helpers (CD4+) isolated by immunomagnetic separation and polarized into the Th17 phenotype with a TCR activator and cytokines. It was found that P-GO at low concentrations (5 µg/mL) had no effect on the parameters studied. The presence of high concentrations of P-GO in T-helper cultures (25 μg/mL) did not affect the number and viability of these cells. However, the percentage of proliferating T-helpers in these cultures was reduced. GO nanoparticles modified with linear polyethylene glycol (PEG) significantly increased the percentage of Th17/22 cells in cultures of Th17-polarized T helpers and the production of IFN-γ, whereas those modified with branched PEG suppressed the synthesis of IL-17. Thus, a low concentration of PEGylated GO nanoparticles (5 μg/mL), in contrast to a concentration of 25 μg/mL, has no effect on the Th17-polarization of T helpers, allowing their further use for in-depth studies of the functions of T lymphocytes and other immune cells. Overall, we have studied for the first time the direct effect of P-GO nanoparticles on the conversion of T helper cells to the Th17 phenotype. |
---|