Cargando…
Predicting Wrist Posture during Occupational Tasks Using Inertial Sensors and Convolutional Neural Networks
Current methods for ergonomic assessment often use video-analysis to estimate wrist postures during occupational tasks. Wearable sensing and machine learning have the potential to automate this tedious task, and in doing so greatly extend the amount of data available to clinicians and researchers. A...
Autores principales: | Young, Calvin, Hamilton-Wright, Andrew, Oliver, Michele L., Gordon, Karen D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865234/ https://www.ncbi.nlm.nih.gov/pubmed/36679747 http://dx.doi.org/10.3390/s23020942 |
Ejemplares similares
-
Evaluation of a New Simplified Inertial Sensor Method against Electrogoniometer for Measuring Wrist Motion in Occupational Studies
por: Manivasagam, Karnica, et al.
Publicado: (2022) -
Automatic Segmentation for Favourable Delineation of Ten Wrist Bones on Wrist Radiographs Using Convolutional Neural Network
por: Kang, Bo-kyeong, et al.
Publicado: (2022) -
Validity and reliability of inertial sensors for elbow and wrist range of motion assessment
por: Costa, Vanina, et al.
Publicado: (2020) -
Measuring postural stability with an inertial sensor: validity and sensitivity
por: Neville, Christopher, et al.
Publicado: (2015) -
Carpal tunnel volume distribution and morphology changes with flexion-extension and radial-ulnar deviation wrist postures
por: Anderson, Drew A., et al.
Publicado: (2022)