Cargando…
Revisiting Consistency for Semi-Supervised Semantic Segmentation †
Semi-supervised learning is an attractive technique in practical deployments of deep models since it relaxes the dependence on labeled data. It is especially important in the scope of dense prediction because pixel-level annotation requires substantial effort. This paper considers semi-supervised al...
Autores principales: | Grubišić, Ivan, Oršić, Marin, Šegvić, Siniša |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865240/ https://www.ncbi.nlm.nih.gov/pubmed/36679735 http://dx.doi.org/10.3390/s23020940 |
Ejemplares similares
-
Semi-Supervised Semantic Segmentation of Remote Sensing Images Based on Dual Cross-Entropy Consistency
por: Cui, Mengtian, et al.
Publicado: (2023) -
Lidar–Camera Semi-Supervised Learning for Semantic Segmentation
por: Caltagirone, Luca, et al.
Publicado: (2021) -
Semi-Self-Supervised Learning for Semantic Segmentation in Images with Dense Patterns
por: Najafian, Keyhan, et al.
Publicado: (2023) -
Efficient semi-supervised semantic segmentation of electron microscopy cancer images with sparse annotations
por: Pagano, Lucas, et al.
Publicado: (2023) -
Feature-enhanced adversarial semi-supervised semantic segmentation network for pulmonary embolism annotation
por: Cheng, Ting-Wei, et al.
Publicado: (2023)