Cargando…

Polyaniline/ZnO Hybrid Nanocomposite: Morphology, Spectroscopy and Optimization of ZnO Concentration for Photovoltaic Applications

The appropriate combination of semiconducting polymer–inorganic nanocomposites can enhance the existing performance of polymers-only-based photovoltaic devices. Hence, polyaniline (PANI)/zinc oxide (ZnO) nanocomposites were prepared by combining ZnO nanoparticles with PANI in four distinct ratios to...

Descripción completa

Detalles Bibliográficos
Autores principales: Alamgeer, Tahir, Muhammad, Sarker, Mahidur R., Ali, Shabina, Ibraheem, Hussian, Shahid, Ali, Sajad, Imran Khan, Muhammad, Khan, Dil Nawaz, Ali, Rashid, Mohd Said, Suhana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865263/
https://www.ncbi.nlm.nih.gov/pubmed/36679244
http://dx.doi.org/10.3390/polym15020363
Descripción
Sumario:The appropriate combination of semiconducting polymer–inorganic nanocomposites can enhance the existing performance of polymers-only-based photovoltaic devices. Hence, polyaniline (PANI)/zinc oxide (ZnO) nanocomposites were prepared by combining ZnO nanoparticles with PANI in four distinct ratios to optimize their photovoltaic performance. Using a simple coating method, PANI, ZnO, and its nanocomposite, with varying weight percent (wt%) concentrations of ZnO nanoparticles, i.e., (1 wt%, 2 wt%, 3 wt%, and 4 wt%), were fabricated and utilized as an active layer to evaluate the potential for the high-power conversion efficiency of various concentrations, respectively. PANI/ZnO nanocomposites are characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-vis) absorption, energy dispersive X-ray (EDX), and I-V measurement techniques. The XRD analysis showed a distinct, narrow peak, which corresponds to the wurtzite ZnO (101) plane. The SEM analysis verified the production of the PANI/ZnO composite by demonstrating that the crystalline ZnO was integrated into the PANI matrix. The elemental composition was determined by energy dispersive X-ray analysis (EDX), which confirmed the existence of PANI and ZnO without any impurities, respectively. Using Fourier transform infrared (FTIR) spectroscopy, various chemical bonds and stretching vibrations were analyzed and assigned to different peaks. The bandgap narrowing with an increasing PANI/ZnO composition led to exceptional optical improvement. The I-V characterization was utilized to investigate the impact of the nanocomposite on the electrical properties of the PANI/ZnO, and various concentrations of ZnO (1 wt%, 2 wt%, 3 wt%, and 4 wt%) in the PANI matrix were analyzed under both light and dark conditions at an STC of 1.5 AM globally. A high PCE of 4.48% was achieved for the PANI/ZnO (3 wt%), which revealed that the conductivity of the PANI/ZnO nanocomposite thin films improved with the increasing nanocomposite concentration.