Cargando…

Isolation of Novel Bacterial Strains Pseudomonas extremaustralis CSW01 and Stutzerimonas stutzeri CSW02 from Sewage Sludge for Paracetamol Biodegradation

Paracetamol is one of the most used pharmaceuticals worldwide, but due to its widespread use it is detected in various environmental matrices, such as surface and ground waters, sediments, soils or even plants, where it is introduced mainly from the discharge of wastewater and the use of sewage slud...

Descripción completa

Detalles Bibliográficos
Autores principales: Vargas-Ordóñez, Antonio, Aguilar-Romero, Inés, Villaverde, Jaime, Madrid, Fernando, Morillo, Esmeralda
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865377/
https://www.ncbi.nlm.nih.gov/pubmed/36677487
http://dx.doi.org/10.3390/microorganisms11010196
_version_ 1784875822552711168
author Vargas-Ordóñez, Antonio
Aguilar-Romero, Inés
Villaverde, Jaime
Madrid, Fernando
Morillo, Esmeralda
author_facet Vargas-Ordóñez, Antonio
Aguilar-Romero, Inés
Villaverde, Jaime
Madrid, Fernando
Morillo, Esmeralda
author_sort Vargas-Ordóñez, Antonio
collection PubMed
description Paracetamol is one of the most used pharmaceuticals worldwide, but due to its widespread use it is detected in various environmental matrices, such as surface and ground waters, sediments, soils or even plants, where it is introduced mainly from the discharge of wastewater and the use of sewage sludge as fertilizer in agriculture. Its accumulation in certain organisms can induce reproductive, neurotoxic or endocrine disorders, being therefore considered an emerging pollutant. This study reports on the isolation, from sewage sludge produced in wastewater treatment plants (WWTPs), of bacterial strains capable of degrading paracetamol. Up to 17 bacterial strains were isolated, but only two of them, identified as Pseudomonas stutzeri CSW02 and Pseudomonas extremaustralis CSW01, were able to degrade very high concentrations of paracetamol in solution as a sole carbon and energy source, and none of them had been previously described as paracetamol degraders. These bacteria showed the ability to degrade up to 500 mg L(−1) of paracetamol in only 6 and 4 h, respectively, much quicker than any other paracetamol-degrader strain described in the literature. The two main paracetamol metabolites, 4-aminophenol and hydroquinone, which present high toxicity, were detected during the degradation process, although they disappeared very quickly for paracetamol concentrations up to 500 mg L(−1). The IC(50) of paracetamol for the growth of these two isolates was also calculated, indicating that P. extremaustralis CSW01 was more tolerant than S. stutzeri CSW02 to high concentrations of paracetamol and/or its metabolites in solution, and this is the reason for the much lower paracetamol degradation by S. stutzeri CSW02 at 2000–3000 mg L(−1). These findings indicate that both bacteria are very promising candidates for their use in paracetamol bioremediation in water and sewage sludge.
format Online
Article
Text
id pubmed-9865377
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-98653772023-01-22 Isolation of Novel Bacterial Strains Pseudomonas extremaustralis CSW01 and Stutzerimonas stutzeri CSW02 from Sewage Sludge for Paracetamol Biodegradation Vargas-Ordóñez, Antonio Aguilar-Romero, Inés Villaverde, Jaime Madrid, Fernando Morillo, Esmeralda Microorganisms Article Paracetamol is one of the most used pharmaceuticals worldwide, but due to its widespread use it is detected in various environmental matrices, such as surface and ground waters, sediments, soils or even plants, where it is introduced mainly from the discharge of wastewater and the use of sewage sludge as fertilizer in agriculture. Its accumulation in certain organisms can induce reproductive, neurotoxic or endocrine disorders, being therefore considered an emerging pollutant. This study reports on the isolation, from sewage sludge produced in wastewater treatment plants (WWTPs), of bacterial strains capable of degrading paracetamol. Up to 17 bacterial strains were isolated, but only two of them, identified as Pseudomonas stutzeri CSW02 and Pseudomonas extremaustralis CSW01, were able to degrade very high concentrations of paracetamol in solution as a sole carbon and energy source, and none of them had been previously described as paracetamol degraders. These bacteria showed the ability to degrade up to 500 mg L(−1) of paracetamol in only 6 and 4 h, respectively, much quicker than any other paracetamol-degrader strain described in the literature. The two main paracetamol metabolites, 4-aminophenol and hydroquinone, which present high toxicity, were detected during the degradation process, although they disappeared very quickly for paracetamol concentrations up to 500 mg L(−1). The IC(50) of paracetamol for the growth of these two isolates was also calculated, indicating that P. extremaustralis CSW01 was more tolerant than S. stutzeri CSW02 to high concentrations of paracetamol and/or its metabolites in solution, and this is the reason for the much lower paracetamol degradation by S. stutzeri CSW02 at 2000–3000 mg L(−1). These findings indicate that both bacteria are very promising candidates for their use in paracetamol bioremediation in water and sewage sludge. MDPI 2023-01-12 /pmc/articles/PMC9865377/ /pubmed/36677487 http://dx.doi.org/10.3390/microorganisms11010196 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Vargas-Ordóñez, Antonio
Aguilar-Romero, Inés
Villaverde, Jaime
Madrid, Fernando
Morillo, Esmeralda
Isolation of Novel Bacterial Strains Pseudomonas extremaustralis CSW01 and Stutzerimonas stutzeri CSW02 from Sewage Sludge for Paracetamol Biodegradation
title Isolation of Novel Bacterial Strains Pseudomonas extremaustralis CSW01 and Stutzerimonas stutzeri CSW02 from Sewage Sludge for Paracetamol Biodegradation
title_full Isolation of Novel Bacterial Strains Pseudomonas extremaustralis CSW01 and Stutzerimonas stutzeri CSW02 from Sewage Sludge for Paracetamol Biodegradation
title_fullStr Isolation of Novel Bacterial Strains Pseudomonas extremaustralis CSW01 and Stutzerimonas stutzeri CSW02 from Sewage Sludge for Paracetamol Biodegradation
title_full_unstemmed Isolation of Novel Bacterial Strains Pseudomonas extremaustralis CSW01 and Stutzerimonas stutzeri CSW02 from Sewage Sludge for Paracetamol Biodegradation
title_short Isolation of Novel Bacterial Strains Pseudomonas extremaustralis CSW01 and Stutzerimonas stutzeri CSW02 from Sewage Sludge for Paracetamol Biodegradation
title_sort isolation of novel bacterial strains pseudomonas extremaustralis csw01 and stutzerimonas stutzeri csw02 from sewage sludge for paracetamol biodegradation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865377/
https://www.ncbi.nlm.nih.gov/pubmed/36677487
http://dx.doi.org/10.3390/microorganisms11010196
work_keys_str_mv AT vargasordonezantonio isolationofnovelbacterialstrainspseudomonasextremaustraliscsw01andstutzerimonasstutzericsw02fromsewagesludgeforparacetamolbiodegradation
AT aguilarromeroines isolationofnovelbacterialstrainspseudomonasextremaustraliscsw01andstutzerimonasstutzericsw02fromsewagesludgeforparacetamolbiodegradation
AT villaverdejaime isolationofnovelbacterialstrainspseudomonasextremaustraliscsw01andstutzerimonasstutzericsw02fromsewagesludgeforparacetamolbiodegradation
AT madridfernando isolationofnovelbacterialstrainspseudomonasextremaustraliscsw01andstutzerimonasstutzericsw02fromsewagesludgeforparacetamolbiodegradation
AT morilloesmeralda isolationofnovelbacterialstrainspseudomonasextremaustraliscsw01andstutzerimonasstutzericsw02fromsewagesludgeforparacetamolbiodegradation