Cargando…

Production, Mechanical and Functional Properties of Long-Length TiNiHf Rods with High-Temperature Shape Memory Effect

In the present work, the possibility of manufacturing long-length TiNiHf rods with a lowered Hf content and a high-temperature shape memory effect in the range of 120–160 °C was studied. Initial ingots with 1.5, 3.0 and 5.0 at.% Hf were obtained by electron beam melting in a copper water-cooled stre...

Descripción completa

Detalles Bibliográficos
Autores principales: Karelin, Roman, Komarov, Victor, Cherkasov, Vladimir, Yusupov, Vladimir, Prokoshkin, Sergey, Andreev, Vladimir
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865431/
https://www.ncbi.nlm.nih.gov/pubmed/36676351
http://dx.doi.org/10.3390/ma16020615
Descripción
Sumario:In the present work, the possibility of manufacturing long-length TiNiHf rods with a lowered Hf content and a high-temperature shape memory effect in the range of 120–160 °C was studied. Initial ingots with 1.5, 3.0 and 5.0 at.% Hf were obtained by electron beam melting in a copper water-cooled stream-type mold. The obtained ingots were rotary forged at the temperature of 950 °C, with the relative strain from 5 to 10% per one pass. The obtained results revealed that the ingots with 3.0 and 5.0 at.% Hf demonstrated insufficient technological plasticity, presumably because of the excess precipitation of (Ti,Hf)(2)Ni-type particles. The premature destruction of ingots during the deformation process does not allow obtaining high-quality long-length rods. A long-length rod with a diameter of 3.5 mm and a length of 870 mm was produced by rotary forging from the ingot with 1.5 at.% Hf. The obtained TiNiHf rod had relatively high values of mechanical properties (a dislocation yield stress σ(y) of 800 MPa, ultimate tensile strength σ(B) of 1000 MPa, and elongation to fracture δ of 24%), functional properties (a completely recoverable strain of 5%), and a required finishing temperature of shape recovery of 125 °C in the as-forged state and of 155 °C after post-deformation annealing at 550 °C for 2 h.