Cargando…
Nanodecoys: A Quintessential Candidate to Augment Theranostic Applications for a Plethora of Diseases
Nanoparticles (NPs) designed for various theranostic purposes have hugely impacted scientific research in the field of biomedicine, bringing forth hopes of a future revolutionized area called nanomedicine. A budding advancement in this area is the conjugation of various cell membranes onto nanoparti...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865542/ https://www.ncbi.nlm.nih.gov/pubmed/36678701 http://dx.doi.org/10.3390/pharmaceutics15010073 |
Sumario: | Nanoparticles (NPs) designed for various theranostic purposes have hugely impacted scientific research in the field of biomedicine, bringing forth hopes of a future revolutionized area called nanomedicine. A budding advancement in this area is the conjugation of various cell membranes onto nanoparticles to develop biomimetic cells called ‘Nanodecoys’ (NDs), which can imitate the functioning of natural cells. This technology of coating cell membranes on NPs has enhanced the working capabilities of nano-based techniques by initiating effective navigation within the bodily system. Due to the presence of multiple functional moieties, nanoparticles coated with cell membranes hold the ability to interact with complex biological microenvironments inside the body with ease. Although developed with the initial motive to increase the time of circulation in the bloodstream and stability by coating membranes of red blood cells, it has further outstretched a wide range of cell lines, such as mesenchymal stem cells, beta cells, thrombocytes, white blood cells, and cancer cells. Thus, these cells and the versatile properties they bring along with them open up a brand-new domain in the biomedical industry where different formulations of nanoparticles can be used in appropriate dosages to treat a plethora of diseases. This review comprises recent investigations of nanodecoys in biomedical applications. |
---|