Cargando…

A Deep Learning System Using Optical Coherence Tomography Angiography to Detect Glaucoma and Anterior Ischemic Optic Neuropathy

Introduction. Glaucoma and non-arteritic anterior ischemic optic neuropathy (NAION) are optic neuropathies that can both lead to irreversible blindness. Several studies have compared optical coherence tomography angiography (OCTA) findings in glaucoma and NAION in the presence of similar functional...

Descripción completa

Detalles Bibliográficos
Autores principales: Bunod, Roxane, Lubrano, Mélanie, Pirovano, Antoine, Chotard, Géraldine, Brasnu, Emmanuelle, Berlemont, Sylvain, Labbé, Antoine, Augstburger, Edouard, Baudouin, Christophe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865592/
https://www.ncbi.nlm.nih.gov/pubmed/36675435
http://dx.doi.org/10.3390/jcm12020507
_version_ 1784875876519772160
author Bunod, Roxane
Lubrano, Mélanie
Pirovano, Antoine
Chotard, Géraldine
Brasnu, Emmanuelle
Berlemont, Sylvain
Labbé, Antoine
Augstburger, Edouard
Baudouin, Christophe
author_facet Bunod, Roxane
Lubrano, Mélanie
Pirovano, Antoine
Chotard, Géraldine
Brasnu, Emmanuelle
Berlemont, Sylvain
Labbé, Antoine
Augstburger, Edouard
Baudouin, Christophe
author_sort Bunod, Roxane
collection PubMed
description Introduction. Glaucoma and non-arteritic anterior ischemic optic neuropathy (NAION) are optic neuropathies that can both lead to irreversible blindness. Several studies have compared optical coherence tomography angiography (OCTA) findings in glaucoma and NAION in the presence of similar functional and structural damages with contradictory results. The goal of this study was to use a deep learning system to differentiate OCTA in glaucoma and NAION. Material and methods. Sixty eyes with glaucoma (including primary open angle glaucoma, angle-closure glaucoma, normal tension glaucoma, pigmentary glaucoma, pseudoexfoliative glaucoma and juvenile glaucoma), thirty eyes with atrophic NAION and forty control eyes (NC) were included. All patients underwent OCTA imaging and automatic segmentation was used to analyze the macular superficial capillary plexus (SCP) and the radial peripapillary capillary (RPC) plexus. We used the classic convolutional neural network (CNN) architecture of ResNet50. Attribution maps were obtained using the “Integrated Gradients” method. Results. The best performances were obtained with the SCP + RPC model achieving a mean area under the receiver operating characteristics curve (ROC AUC) of 0.94 (95% CI 0.92–0.96) for glaucoma, 0.90 (95% CI 0.86–0.94) for NAION and 0.96 (95% CI 0.96–0.97) for NC. Conclusion. This study shows that deep learning architecture can classify NAION, glaucoma and normal OCTA images with a good diagnostic performance and may outperform the specialist assessment.
format Online
Article
Text
id pubmed-9865592
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-98655922023-01-22 A Deep Learning System Using Optical Coherence Tomography Angiography to Detect Glaucoma and Anterior Ischemic Optic Neuropathy Bunod, Roxane Lubrano, Mélanie Pirovano, Antoine Chotard, Géraldine Brasnu, Emmanuelle Berlemont, Sylvain Labbé, Antoine Augstburger, Edouard Baudouin, Christophe J Clin Med Article Introduction. Glaucoma and non-arteritic anterior ischemic optic neuropathy (NAION) are optic neuropathies that can both lead to irreversible blindness. Several studies have compared optical coherence tomography angiography (OCTA) findings in glaucoma and NAION in the presence of similar functional and structural damages with contradictory results. The goal of this study was to use a deep learning system to differentiate OCTA in glaucoma and NAION. Material and methods. Sixty eyes with glaucoma (including primary open angle glaucoma, angle-closure glaucoma, normal tension glaucoma, pigmentary glaucoma, pseudoexfoliative glaucoma and juvenile glaucoma), thirty eyes with atrophic NAION and forty control eyes (NC) were included. All patients underwent OCTA imaging and automatic segmentation was used to analyze the macular superficial capillary plexus (SCP) and the radial peripapillary capillary (RPC) plexus. We used the classic convolutional neural network (CNN) architecture of ResNet50. Attribution maps were obtained using the “Integrated Gradients” method. Results. The best performances were obtained with the SCP + RPC model achieving a mean area under the receiver operating characteristics curve (ROC AUC) of 0.94 (95% CI 0.92–0.96) for glaucoma, 0.90 (95% CI 0.86–0.94) for NAION and 0.96 (95% CI 0.96–0.97) for NC. Conclusion. This study shows that deep learning architecture can classify NAION, glaucoma and normal OCTA images with a good diagnostic performance and may outperform the specialist assessment. MDPI 2023-01-07 /pmc/articles/PMC9865592/ /pubmed/36675435 http://dx.doi.org/10.3390/jcm12020507 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Bunod, Roxane
Lubrano, Mélanie
Pirovano, Antoine
Chotard, Géraldine
Brasnu, Emmanuelle
Berlemont, Sylvain
Labbé, Antoine
Augstburger, Edouard
Baudouin, Christophe
A Deep Learning System Using Optical Coherence Tomography Angiography to Detect Glaucoma and Anterior Ischemic Optic Neuropathy
title A Deep Learning System Using Optical Coherence Tomography Angiography to Detect Glaucoma and Anterior Ischemic Optic Neuropathy
title_full A Deep Learning System Using Optical Coherence Tomography Angiography to Detect Glaucoma and Anterior Ischemic Optic Neuropathy
title_fullStr A Deep Learning System Using Optical Coherence Tomography Angiography to Detect Glaucoma and Anterior Ischemic Optic Neuropathy
title_full_unstemmed A Deep Learning System Using Optical Coherence Tomography Angiography to Detect Glaucoma and Anterior Ischemic Optic Neuropathy
title_short A Deep Learning System Using Optical Coherence Tomography Angiography to Detect Glaucoma and Anterior Ischemic Optic Neuropathy
title_sort deep learning system using optical coherence tomography angiography to detect glaucoma and anterior ischemic optic neuropathy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865592/
https://www.ncbi.nlm.nih.gov/pubmed/36675435
http://dx.doi.org/10.3390/jcm12020507
work_keys_str_mv AT bunodroxane adeeplearningsystemusingopticalcoherencetomographyangiographytodetectglaucomaandanteriorischemicopticneuropathy
AT lubranomelanie adeeplearningsystemusingopticalcoherencetomographyangiographytodetectglaucomaandanteriorischemicopticneuropathy
AT pirovanoantoine adeeplearningsystemusingopticalcoherencetomographyangiographytodetectglaucomaandanteriorischemicopticneuropathy
AT chotardgeraldine adeeplearningsystemusingopticalcoherencetomographyangiographytodetectglaucomaandanteriorischemicopticneuropathy
AT brasnuemmanuelle adeeplearningsystemusingopticalcoherencetomographyangiographytodetectglaucomaandanteriorischemicopticneuropathy
AT berlemontsylvain adeeplearningsystemusingopticalcoherencetomographyangiographytodetectglaucomaandanteriorischemicopticneuropathy
AT labbeantoine adeeplearningsystemusingopticalcoherencetomographyangiographytodetectglaucomaandanteriorischemicopticneuropathy
AT augstburgeredouard adeeplearningsystemusingopticalcoherencetomographyangiographytodetectglaucomaandanteriorischemicopticneuropathy
AT baudouinchristophe adeeplearningsystemusingopticalcoherencetomographyangiographytodetectglaucomaandanteriorischemicopticneuropathy
AT bunodroxane deeplearningsystemusingopticalcoherencetomographyangiographytodetectglaucomaandanteriorischemicopticneuropathy
AT lubranomelanie deeplearningsystemusingopticalcoherencetomographyangiographytodetectglaucomaandanteriorischemicopticneuropathy
AT pirovanoantoine deeplearningsystemusingopticalcoherencetomographyangiographytodetectglaucomaandanteriorischemicopticneuropathy
AT chotardgeraldine deeplearningsystemusingopticalcoherencetomographyangiographytodetectglaucomaandanteriorischemicopticneuropathy
AT brasnuemmanuelle deeplearningsystemusingopticalcoherencetomographyangiographytodetectglaucomaandanteriorischemicopticneuropathy
AT berlemontsylvain deeplearningsystemusingopticalcoherencetomographyangiographytodetectglaucomaandanteriorischemicopticneuropathy
AT labbeantoine deeplearningsystemusingopticalcoherencetomographyangiographytodetectglaucomaandanteriorischemicopticneuropathy
AT augstburgeredouard deeplearningsystemusingopticalcoherencetomographyangiographytodetectglaucomaandanteriorischemicopticneuropathy
AT baudouinchristophe deeplearningsystemusingopticalcoherencetomographyangiographytodetectglaucomaandanteriorischemicopticneuropathy