Cargando…
A Deep Learning System Using Optical Coherence Tomography Angiography to Detect Glaucoma and Anterior Ischemic Optic Neuropathy
Introduction. Glaucoma and non-arteritic anterior ischemic optic neuropathy (NAION) are optic neuropathies that can both lead to irreversible blindness. Several studies have compared optical coherence tomography angiography (OCTA) findings in glaucoma and NAION in the presence of similar functional...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865592/ https://www.ncbi.nlm.nih.gov/pubmed/36675435 http://dx.doi.org/10.3390/jcm12020507 |
_version_ | 1784875876519772160 |
---|---|
author | Bunod, Roxane Lubrano, Mélanie Pirovano, Antoine Chotard, Géraldine Brasnu, Emmanuelle Berlemont, Sylvain Labbé, Antoine Augstburger, Edouard Baudouin, Christophe |
author_facet | Bunod, Roxane Lubrano, Mélanie Pirovano, Antoine Chotard, Géraldine Brasnu, Emmanuelle Berlemont, Sylvain Labbé, Antoine Augstburger, Edouard Baudouin, Christophe |
author_sort | Bunod, Roxane |
collection | PubMed |
description | Introduction. Glaucoma and non-arteritic anterior ischemic optic neuropathy (NAION) are optic neuropathies that can both lead to irreversible blindness. Several studies have compared optical coherence tomography angiography (OCTA) findings in glaucoma and NAION in the presence of similar functional and structural damages with contradictory results. The goal of this study was to use a deep learning system to differentiate OCTA in glaucoma and NAION. Material and methods. Sixty eyes with glaucoma (including primary open angle glaucoma, angle-closure glaucoma, normal tension glaucoma, pigmentary glaucoma, pseudoexfoliative glaucoma and juvenile glaucoma), thirty eyes with atrophic NAION and forty control eyes (NC) were included. All patients underwent OCTA imaging and automatic segmentation was used to analyze the macular superficial capillary plexus (SCP) and the radial peripapillary capillary (RPC) plexus. We used the classic convolutional neural network (CNN) architecture of ResNet50. Attribution maps were obtained using the “Integrated Gradients” method. Results. The best performances were obtained with the SCP + RPC model achieving a mean area under the receiver operating characteristics curve (ROC AUC) of 0.94 (95% CI 0.92–0.96) for glaucoma, 0.90 (95% CI 0.86–0.94) for NAION and 0.96 (95% CI 0.96–0.97) for NC. Conclusion. This study shows that deep learning architecture can classify NAION, glaucoma and normal OCTA images with a good diagnostic performance and may outperform the specialist assessment. |
format | Online Article Text |
id | pubmed-9865592 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98655922023-01-22 A Deep Learning System Using Optical Coherence Tomography Angiography to Detect Glaucoma and Anterior Ischemic Optic Neuropathy Bunod, Roxane Lubrano, Mélanie Pirovano, Antoine Chotard, Géraldine Brasnu, Emmanuelle Berlemont, Sylvain Labbé, Antoine Augstburger, Edouard Baudouin, Christophe J Clin Med Article Introduction. Glaucoma and non-arteritic anterior ischemic optic neuropathy (NAION) are optic neuropathies that can both lead to irreversible blindness. Several studies have compared optical coherence tomography angiography (OCTA) findings in glaucoma and NAION in the presence of similar functional and structural damages with contradictory results. The goal of this study was to use a deep learning system to differentiate OCTA in glaucoma and NAION. Material and methods. Sixty eyes with glaucoma (including primary open angle glaucoma, angle-closure glaucoma, normal tension glaucoma, pigmentary glaucoma, pseudoexfoliative glaucoma and juvenile glaucoma), thirty eyes with atrophic NAION and forty control eyes (NC) were included. All patients underwent OCTA imaging and automatic segmentation was used to analyze the macular superficial capillary plexus (SCP) and the radial peripapillary capillary (RPC) plexus. We used the classic convolutional neural network (CNN) architecture of ResNet50. Attribution maps were obtained using the “Integrated Gradients” method. Results. The best performances were obtained with the SCP + RPC model achieving a mean area under the receiver operating characteristics curve (ROC AUC) of 0.94 (95% CI 0.92–0.96) for glaucoma, 0.90 (95% CI 0.86–0.94) for NAION and 0.96 (95% CI 0.96–0.97) for NC. Conclusion. This study shows that deep learning architecture can classify NAION, glaucoma and normal OCTA images with a good diagnostic performance and may outperform the specialist assessment. MDPI 2023-01-07 /pmc/articles/PMC9865592/ /pubmed/36675435 http://dx.doi.org/10.3390/jcm12020507 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bunod, Roxane Lubrano, Mélanie Pirovano, Antoine Chotard, Géraldine Brasnu, Emmanuelle Berlemont, Sylvain Labbé, Antoine Augstburger, Edouard Baudouin, Christophe A Deep Learning System Using Optical Coherence Tomography Angiography to Detect Glaucoma and Anterior Ischemic Optic Neuropathy |
title | A Deep Learning System Using Optical Coherence Tomography Angiography to Detect Glaucoma and Anterior Ischemic Optic Neuropathy |
title_full | A Deep Learning System Using Optical Coherence Tomography Angiography to Detect Glaucoma and Anterior Ischemic Optic Neuropathy |
title_fullStr | A Deep Learning System Using Optical Coherence Tomography Angiography to Detect Glaucoma and Anterior Ischemic Optic Neuropathy |
title_full_unstemmed | A Deep Learning System Using Optical Coherence Tomography Angiography to Detect Glaucoma and Anterior Ischemic Optic Neuropathy |
title_short | A Deep Learning System Using Optical Coherence Tomography Angiography to Detect Glaucoma and Anterior Ischemic Optic Neuropathy |
title_sort | deep learning system using optical coherence tomography angiography to detect glaucoma and anterior ischemic optic neuropathy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865592/ https://www.ncbi.nlm.nih.gov/pubmed/36675435 http://dx.doi.org/10.3390/jcm12020507 |
work_keys_str_mv | AT bunodroxane adeeplearningsystemusingopticalcoherencetomographyangiographytodetectglaucomaandanteriorischemicopticneuropathy AT lubranomelanie adeeplearningsystemusingopticalcoherencetomographyangiographytodetectglaucomaandanteriorischemicopticneuropathy AT pirovanoantoine adeeplearningsystemusingopticalcoherencetomographyangiographytodetectglaucomaandanteriorischemicopticneuropathy AT chotardgeraldine adeeplearningsystemusingopticalcoherencetomographyangiographytodetectglaucomaandanteriorischemicopticneuropathy AT brasnuemmanuelle adeeplearningsystemusingopticalcoherencetomographyangiographytodetectglaucomaandanteriorischemicopticneuropathy AT berlemontsylvain adeeplearningsystemusingopticalcoherencetomographyangiographytodetectglaucomaandanteriorischemicopticneuropathy AT labbeantoine adeeplearningsystemusingopticalcoherencetomographyangiographytodetectglaucomaandanteriorischemicopticneuropathy AT augstburgeredouard adeeplearningsystemusingopticalcoherencetomographyangiographytodetectglaucomaandanteriorischemicopticneuropathy AT baudouinchristophe adeeplearningsystemusingopticalcoherencetomographyangiographytodetectglaucomaandanteriorischemicopticneuropathy AT bunodroxane deeplearningsystemusingopticalcoherencetomographyangiographytodetectglaucomaandanteriorischemicopticneuropathy AT lubranomelanie deeplearningsystemusingopticalcoherencetomographyangiographytodetectglaucomaandanteriorischemicopticneuropathy AT pirovanoantoine deeplearningsystemusingopticalcoherencetomographyangiographytodetectglaucomaandanteriorischemicopticneuropathy AT chotardgeraldine deeplearningsystemusingopticalcoherencetomographyangiographytodetectglaucomaandanteriorischemicopticneuropathy AT brasnuemmanuelle deeplearningsystemusingopticalcoherencetomographyangiographytodetectglaucomaandanteriorischemicopticneuropathy AT berlemontsylvain deeplearningsystemusingopticalcoherencetomographyangiographytodetectglaucomaandanteriorischemicopticneuropathy AT labbeantoine deeplearningsystemusingopticalcoherencetomographyangiographytodetectglaucomaandanteriorischemicopticneuropathy AT augstburgeredouard deeplearningsystemusingopticalcoherencetomographyangiographytodetectglaucomaandanteriorischemicopticneuropathy AT baudouinchristophe deeplearningsystemusingopticalcoherencetomographyangiographytodetectglaucomaandanteriorischemicopticneuropathy |