Cargando…
Predictive Performance of Machine Learning-Based Methods for the Prediction of Preeclampsia—A Prospective Study
(1) Background: Preeclampsia (PE) prediction in the first trimester of pregnancy is a challenge for clinicians. The aim of this study was to evaluate and compare the predictive performances of machine learning-based models for the prediction of preeclampsia and its subtypes. (2) Methods: This prospe...
Autores principales: | Melinte-Popescu, Alina-Sinziana, Vasilache, Ingrid-Andrada, Socolov, Demetra, Melinte-Popescu, Marian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865606/ https://www.ncbi.nlm.nih.gov/pubmed/36675347 http://dx.doi.org/10.3390/jcm12020418 |
Ejemplares similares
-
Prediction of HELLP Syndrome Severity Using Machine Learning Algorithms—Results from a Retrospective Study
por: Melinte-Popescu, Marian, et al.
Publicado: (2023) -
Managing Fetal Ovarian Cysts: Clinical Experience with a Rare Disorder
por: Melinte-Popescu, Alina-Sinziana, et al.
Publicado: (2023) -
Machine Learning Approaches for the Prediction of Hepatitis B and C Seropositivity
por: Harabor, Valeriu, et al.
Publicado: (2023) -
Pregnancy Outcomes, Immunophenotyping and Immunohistochemical Findings in a Cohort of Pregnant Patients with COVID-19—A Prospective Study
por: Adam, Ana-Maria, et al.
Publicado: (2023) -
Hematologic Risk Factors for the Development of Retinopathy of Prematurity—A Retrospective Study
por: Zonda, Gabriela Ildiko, et al.
Publicado: (2023)