Cargando…

Effects of Clinical Use on the Mechanical Properties of Bio-Active(®) (BA) and TriTanium(®) (TR) Multiforce Nickel-Titanium Orthodontic Archwires

Multiforce orthodontic archwires are thermodynamic wires made of nickel-titanium alloy (Ni-Ti). They release biologically tolerable forces along their length, progressively increasing from front to back. The frontal archwires’ segments distribute the weakest force: the premolar, the greater, and the...

Descripción completa

Detalles Bibliográficos
Autores principales: Stoyanova-Ivanova, Angelina, Georgieva, Mirela, Petrov, Valeri, Andreeva, Laura, Petkov, Alexander, Georgiev, Velizar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865704/
https://www.ncbi.nlm.nih.gov/pubmed/36676221
http://dx.doi.org/10.3390/ma16020483
Descripción
Sumario:Multiforce orthodontic archwires are thermodynamic wires made of nickel-titanium alloy (Ni-Ti). They release biologically tolerable forces along their length, progressively increasing from front to back. The frontal archwires’ segments distribute the weakest force: the premolar, the greater, and the molar, the greatest. The aim of the present study was to determine the influence of clinical use on the mechanical properties of two types of multi-force orthodontic archwires (TriTanium(®), American orthodontics; Bio-Active(®), GC) with dimensions of 0.016 × 0.022 inches for periods of up to 8 weeks and over 8 weeks of in-vivo use. A three-point bending test was used, and the data gained is statistically analyzed through a multi-variance comparison Mann-Whitney test. We found that after uses of up to 8 weeks and over 8 weeks, the shape memory effect and superelasticity are preserved, as well as the tendency for differential force release along the length of the archwires is kept.