Cargando…
Diosmin Mitigates Gentamicin-Induced Nephrotoxicity in Rats: Insights on miR-21 and -155 Expression, Nrf2/HO-1 and p38-MAPK/NF-κB Pathways
Gentamicin (GNT) is the most frequently used aminoglycoside. However, its therapeutic efficacy is limited due to nephrotoxicity. Thus, the potential anticipatory effect of Diosmin (DIOS) against GNT-prompted kidney damage in rats together with the putative nephroprotective pathways were scrutinized....
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865818/ https://www.ncbi.nlm.nih.gov/pubmed/36668774 http://dx.doi.org/10.3390/toxics11010048 |
_version_ | 1784875933556015104 |
---|---|
author | Nadeem, Rania I. Aboutaleb, Amany S. Younis, Nancy S. Ahmed, Hebatalla I. |
author_facet | Nadeem, Rania I. Aboutaleb, Amany S. Younis, Nancy S. Ahmed, Hebatalla I. |
author_sort | Nadeem, Rania I. |
collection | PubMed |
description | Gentamicin (GNT) is the most frequently used aminoglycoside. However, its therapeutic efficacy is limited due to nephrotoxicity. Thus, the potential anticipatory effect of Diosmin (DIOS) against GNT-prompted kidney damage in rats together with the putative nephroprotective pathways were scrutinized. Four groups of rats were used: (1) control; (2) GNT only; (3) GNT plus DIOS; and (4) DIOS only. Nephrotoxicity was elucidated, and the microRNA-21 (miR-21) and microRNA-155 (miR-155) expression and Nrf2/HO-1 and p38-MAPK/NF-κB pathways were assessed. GNT provoked an upsurge in the relative kidney weight and serum level of urea, creatinine, and KIM-1. The MDA level was markedly boosted, with a decline in the level of TAC, SOD, HO-1, and Nrf2 expression in the renal tissue. Additionally, GNT exhibited a notable amplification in TNF-α, IL-1β, NF-κB p65, and p38-MAPK kidney levels. Moreover, caspase-3 and BAX expression were elevated, whereas the Bcl-2 level was reduced. Furthermore, GNT resulted in the down-regulation of miR-21 expression along with an up-regulation of the miR-155 expression. Histological examination revealed inflammation, degradation, and necrosis. GNT-provoked pathological abnormalities were reversed by DIOS treatment, which restored normal kidney architecture. Hence, regulating miR-21 and -155 expression and modulating Nrf2/HO-1 and p38-MAPK/NF-κB pathways could take a vital part in mediating the reno-protective effect of DIOS. |
format | Online Article Text |
id | pubmed-9865818 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98658182023-01-22 Diosmin Mitigates Gentamicin-Induced Nephrotoxicity in Rats: Insights on miR-21 and -155 Expression, Nrf2/HO-1 and p38-MAPK/NF-κB Pathways Nadeem, Rania I. Aboutaleb, Amany S. Younis, Nancy S. Ahmed, Hebatalla I. Toxics Article Gentamicin (GNT) is the most frequently used aminoglycoside. However, its therapeutic efficacy is limited due to nephrotoxicity. Thus, the potential anticipatory effect of Diosmin (DIOS) against GNT-prompted kidney damage in rats together with the putative nephroprotective pathways were scrutinized. Four groups of rats were used: (1) control; (2) GNT only; (3) GNT plus DIOS; and (4) DIOS only. Nephrotoxicity was elucidated, and the microRNA-21 (miR-21) and microRNA-155 (miR-155) expression and Nrf2/HO-1 and p38-MAPK/NF-κB pathways were assessed. GNT provoked an upsurge in the relative kidney weight and serum level of urea, creatinine, and KIM-1. The MDA level was markedly boosted, with a decline in the level of TAC, SOD, HO-1, and Nrf2 expression in the renal tissue. Additionally, GNT exhibited a notable amplification in TNF-α, IL-1β, NF-κB p65, and p38-MAPK kidney levels. Moreover, caspase-3 and BAX expression were elevated, whereas the Bcl-2 level was reduced. Furthermore, GNT resulted in the down-regulation of miR-21 expression along with an up-regulation of the miR-155 expression. Histological examination revealed inflammation, degradation, and necrosis. GNT-provoked pathological abnormalities were reversed by DIOS treatment, which restored normal kidney architecture. Hence, regulating miR-21 and -155 expression and modulating Nrf2/HO-1 and p38-MAPK/NF-κB pathways could take a vital part in mediating the reno-protective effect of DIOS. MDPI 2023-01-01 /pmc/articles/PMC9865818/ /pubmed/36668774 http://dx.doi.org/10.3390/toxics11010048 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Nadeem, Rania I. Aboutaleb, Amany S. Younis, Nancy S. Ahmed, Hebatalla I. Diosmin Mitigates Gentamicin-Induced Nephrotoxicity in Rats: Insights on miR-21 and -155 Expression, Nrf2/HO-1 and p38-MAPK/NF-κB Pathways |
title | Diosmin Mitigates Gentamicin-Induced Nephrotoxicity in Rats: Insights on miR-21 and -155 Expression, Nrf2/HO-1 and p38-MAPK/NF-κB Pathways |
title_full | Diosmin Mitigates Gentamicin-Induced Nephrotoxicity in Rats: Insights on miR-21 and -155 Expression, Nrf2/HO-1 and p38-MAPK/NF-κB Pathways |
title_fullStr | Diosmin Mitigates Gentamicin-Induced Nephrotoxicity in Rats: Insights on miR-21 and -155 Expression, Nrf2/HO-1 and p38-MAPK/NF-κB Pathways |
title_full_unstemmed | Diosmin Mitigates Gentamicin-Induced Nephrotoxicity in Rats: Insights on miR-21 and -155 Expression, Nrf2/HO-1 and p38-MAPK/NF-κB Pathways |
title_short | Diosmin Mitigates Gentamicin-Induced Nephrotoxicity in Rats: Insights on miR-21 and -155 Expression, Nrf2/HO-1 and p38-MAPK/NF-κB Pathways |
title_sort | diosmin mitigates gentamicin-induced nephrotoxicity in rats: insights on mir-21 and -155 expression, nrf2/ho-1 and p38-mapk/nf-κb pathways |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865818/ https://www.ncbi.nlm.nih.gov/pubmed/36668774 http://dx.doi.org/10.3390/toxics11010048 |
work_keys_str_mv | AT nadeemraniai diosminmitigatesgentamicininducednephrotoxicityinratsinsightsonmir21and155expressionnrf2ho1andp38mapknfkbpathways AT aboutalebamanys diosminmitigatesgentamicininducednephrotoxicityinratsinsightsonmir21and155expressionnrf2ho1andp38mapknfkbpathways AT younisnancys diosminmitigatesgentamicininducednephrotoxicityinratsinsightsonmir21and155expressionnrf2ho1andp38mapknfkbpathways AT ahmedhebatallai diosminmitigatesgentamicininducednephrotoxicityinratsinsightsonmir21and155expressionnrf2ho1andp38mapknfkbpathways |