Cargando…
A Supramolecular Nanoassembly of Lenvatinib and a Green Light-Activatable NO Releaser for Combined Chemo-Phototherapy
The chemotherapeutic Lenvatinib (LVB) and a nitric oxide (NO) photodonor based on a rhodamine antenna (RD-NO) activatable by the highly compatible green light are supramolecularly assembled by a β-cyclodextrin branched polymer (PolyCD). The poorly water-soluble LVB and RD-NO solubilize very well wit...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865831/ https://www.ncbi.nlm.nih.gov/pubmed/36678725 http://dx.doi.org/10.3390/pharmaceutics15010096 |
_version_ | 1784875936816037888 |
---|---|
author | Laneri, Francesca Licciardello, Nadia Suzuki, Yota Graziano, Adriana C. E. Sodano, Federica Fraix, Aurore Sortino, Salvatore |
author_facet | Laneri, Francesca Licciardello, Nadia Suzuki, Yota Graziano, Adriana C. E. Sodano, Federica Fraix, Aurore Sortino, Salvatore |
author_sort | Laneri, Francesca |
collection | PubMed |
description | The chemotherapeutic Lenvatinib (LVB) and a nitric oxide (NO) photodonor based on a rhodamine antenna (RD-NO) activatable by the highly compatible green light are supramolecularly assembled by a β-cyclodextrin branched polymer (PolyCD). The poorly water-soluble LVB and RD-NO solubilize very well within the polymeric host leading to a ternary supramolecular nanoassembly with a diameter of ~55 nm. The efficiency of the NO photorelease and the typical red fluorescence of RD-NO significantly enhance within the polymer due to its active role in the photochemical and photophysical deactivation pathways. The co-presence of LVB within the same host does not affect either the nature or the efficiency of the photoinduced processes of RD-NO. Besides, irradiation of RD-NO does not lead to the decomposition of LVB, ruling out any intermolecular photoinduced process between the two guests despite sharing the same host. Ad-hoc devised Förster Resonance Energy Transfer experiments demonstrate this to be the result of the not close proximity of the two guests, which are confined in different compartments of the same polymeric host. The supramolecular complex is stable in a culture medium, and its biological activity has been evaluated against HEP-G2 hepatocarcinoma cell lines in the dark and under irradiation with visible green light, using LVB at a concentration well below the IC(50). Comparative experiments performed using the polymeric host encapsulating the individual LVB and RD-NO components under the same experimental conditions show that the moderate cell mortality induced by the ternary complex in the dark increases significantly upon irradiation with visible green light, more likely as the result of synergism between the NO photogenerated and the chemotherapeutic. |
format | Online Article Text |
id | pubmed-9865831 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98658312023-01-22 A Supramolecular Nanoassembly of Lenvatinib and a Green Light-Activatable NO Releaser for Combined Chemo-Phototherapy Laneri, Francesca Licciardello, Nadia Suzuki, Yota Graziano, Adriana C. E. Sodano, Federica Fraix, Aurore Sortino, Salvatore Pharmaceutics Article The chemotherapeutic Lenvatinib (LVB) and a nitric oxide (NO) photodonor based on a rhodamine antenna (RD-NO) activatable by the highly compatible green light are supramolecularly assembled by a β-cyclodextrin branched polymer (PolyCD). The poorly water-soluble LVB and RD-NO solubilize very well within the polymeric host leading to a ternary supramolecular nanoassembly with a diameter of ~55 nm. The efficiency of the NO photorelease and the typical red fluorescence of RD-NO significantly enhance within the polymer due to its active role in the photochemical and photophysical deactivation pathways. The co-presence of LVB within the same host does not affect either the nature or the efficiency of the photoinduced processes of RD-NO. Besides, irradiation of RD-NO does not lead to the decomposition of LVB, ruling out any intermolecular photoinduced process between the two guests despite sharing the same host. Ad-hoc devised Förster Resonance Energy Transfer experiments demonstrate this to be the result of the not close proximity of the two guests, which are confined in different compartments of the same polymeric host. The supramolecular complex is stable in a culture medium, and its biological activity has been evaluated against HEP-G2 hepatocarcinoma cell lines in the dark and under irradiation with visible green light, using LVB at a concentration well below the IC(50). Comparative experiments performed using the polymeric host encapsulating the individual LVB and RD-NO components under the same experimental conditions show that the moderate cell mortality induced by the ternary complex in the dark increases significantly upon irradiation with visible green light, more likely as the result of synergism between the NO photogenerated and the chemotherapeutic. MDPI 2022-12-28 /pmc/articles/PMC9865831/ /pubmed/36678725 http://dx.doi.org/10.3390/pharmaceutics15010096 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Laneri, Francesca Licciardello, Nadia Suzuki, Yota Graziano, Adriana C. E. Sodano, Federica Fraix, Aurore Sortino, Salvatore A Supramolecular Nanoassembly of Lenvatinib and a Green Light-Activatable NO Releaser for Combined Chemo-Phototherapy |
title | A Supramolecular Nanoassembly of Lenvatinib and a Green Light-Activatable NO Releaser for Combined Chemo-Phototherapy |
title_full | A Supramolecular Nanoassembly of Lenvatinib and a Green Light-Activatable NO Releaser for Combined Chemo-Phototherapy |
title_fullStr | A Supramolecular Nanoassembly of Lenvatinib and a Green Light-Activatable NO Releaser for Combined Chemo-Phototherapy |
title_full_unstemmed | A Supramolecular Nanoassembly of Lenvatinib and a Green Light-Activatable NO Releaser for Combined Chemo-Phototherapy |
title_short | A Supramolecular Nanoassembly of Lenvatinib and a Green Light-Activatable NO Releaser for Combined Chemo-Phototherapy |
title_sort | supramolecular nanoassembly of lenvatinib and a green light-activatable no releaser for combined chemo-phototherapy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865831/ https://www.ncbi.nlm.nih.gov/pubmed/36678725 http://dx.doi.org/10.3390/pharmaceutics15010096 |
work_keys_str_mv | AT lanerifrancesca asupramolecularnanoassemblyoflenvatinibandagreenlightactivatablenoreleaserforcombinedchemophototherapy AT licciardellonadia asupramolecularnanoassemblyoflenvatinibandagreenlightactivatablenoreleaserforcombinedchemophototherapy AT suzukiyota asupramolecularnanoassemblyoflenvatinibandagreenlightactivatablenoreleaserforcombinedchemophototherapy AT grazianoadrianace asupramolecularnanoassemblyoflenvatinibandagreenlightactivatablenoreleaserforcombinedchemophototherapy AT sodanofederica asupramolecularnanoassemblyoflenvatinibandagreenlightactivatablenoreleaserforcombinedchemophototherapy AT fraixaurore asupramolecularnanoassemblyoflenvatinibandagreenlightactivatablenoreleaserforcombinedchemophototherapy AT sortinosalvatore asupramolecularnanoassemblyoflenvatinibandagreenlightactivatablenoreleaserforcombinedchemophototherapy AT lanerifrancesca supramolecularnanoassemblyoflenvatinibandagreenlightactivatablenoreleaserforcombinedchemophototherapy AT licciardellonadia supramolecularnanoassemblyoflenvatinibandagreenlightactivatablenoreleaserforcombinedchemophototherapy AT suzukiyota supramolecularnanoassemblyoflenvatinibandagreenlightactivatablenoreleaserforcombinedchemophototherapy AT grazianoadrianace supramolecularnanoassemblyoflenvatinibandagreenlightactivatablenoreleaserforcombinedchemophototherapy AT sodanofederica supramolecularnanoassemblyoflenvatinibandagreenlightactivatablenoreleaserforcombinedchemophototherapy AT fraixaurore supramolecularnanoassemblyoflenvatinibandagreenlightactivatablenoreleaserforcombinedchemophototherapy AT sortinosalvatore supramolecularnanoassemblyoflenvatinibandagreenlightactivatablenoreleaserforcombinedchemophototherapy |