Cargando…
LIonomers-New Generation of Ionomer: Understanding of Their Interaction and Structuration as a Function of the Tunability of Cation and Anion
In this work, by combining maleic anhydride-grafted polypropylene (PPgMA) and three different ionic liquids (ILs), i.e., tributyl (ethyl) phosphonium diethyl phosphate (denoted P(+)DEP), 1-ethyl-3-methylimidazolium diethyl phosphate (denoted EMIM DEP), and 1-ethyl-3-methylimidazolium acetate (denote...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865942/ https://www.ncbi.nlm.nih.gov/pubmed/36679248 http://dx.doi.org/10.3390/polym15020370 |
Sumario: | In this work, by combining maleic anhydride-grafted polypropylene (PPgMA) and three different ionic liquids (ILs), i.e., tributyl (ethyl) phosphonium diethyl phosphate (denoted P(+)DEP), 1-ethyl-3-methylimidazolium diethyl phosphate (denoted EMIM DEP), and 1-ethyl-3-methylimidazolium acetate (denoted EMIM Ac), new ionic PP/IL polymer materials are generated and denoted as LIonomers. The structuration of ILs in LIonomers occurs from a nano/microphase separation process proved by TEM. NMR analyses reveal the existence of ionic–ionic and ionic–dipolar interactions between PPgMA and ILs within LIonomers. The rheological behavior of such IL/polymer combinations interpret the existence of interactions between maleic anhydride group and cation or anion composing the ionic liquid. These interactions can be tuned by the nature of cation (P(+)DEP vs. EMIM DEP) and anion (EMIM DEP vs. EMIM Ac) but also depend on the IL content. Thermal analyses demonstrate that IL could affect the crystallization process according to different pathways. Thanks to the maleic anhydride/IL interactions, an excellent compromise between stiffness and stretchability is obtained paving the way for processing new polyolefin-based materials. |
---|