Cargando…

Fabrication of Cu/Al/Cu Laminated Composites Reinforced with Graphene by Hot Pressing and Evaluation of Their Electrical Conductivity

Metal laminated composites are widely used in industrial and commercial applications due to their excellent overall performance. In this study, the copper/graphene-aluminum-copper/graphene (Cu/Gr-Al-Cu/Gr) laminated composites were prepared by ingenious hot pressing design. Raman, optical microscope...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Hang, Zhang, Ruixiang, Xu, Qin, Kong, Xiangqing, Sun, Wanting, Fu, Ying, Wu, Muhong, Liu, Kaihui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9866027/
https://www.ncbi.nlm.nih.gov/pubmed/36676359
http://dx.doi.org/10.3390/ma16020622
Descripción
Sumario:Metal laminated composites are widely used in industrial and commercial applications due to their excellent overall performance. In this study, the copper/graphene-aluminum-copper/graphene (Cu/Gr-Al-Cu/Gr) laminated composites were prepared by ingenious hot pressing design. Raman, optical microscope (OM), scanning electron microscope (SEM), van der Pauw (vdP), and X-Ray Diffractometer (XRD) were used to investigate the graphene status, interface bonding, diffusion layer thickness, electrical conductivity, Miller indices and secondary phases, respectively. The results demonstrate that the Cu-Al interfaces in the Cu/Gr-Al-Cu/Gr composites were free of pores, cracks and other defects and bonded well. The number of graphene layers was varied by regulating the thickness of the Cu/Gr layer, with the Cu/Gr foils fabricated by chemical vapor deposition (CVD). The electrical conductivity of the composite was significantly improved by the induced high-quality interfaces Cu/Gr structure. The increased number of graphene layers is beneficial for enhancing the electrical conductivity of the Cu/Gr-Al-Cu/Gr composite, and the highest conductivity improved by 20.5% compared to that of raw Al.