Cargando…
Assessment of Convolutional Neural Network Pre-Trained Models for Detection and Orientation of Cracks
Failure due to cracks is a major structural safety issue for engineering constructions. Human examination is the most common method for detecting crack failure, although it is subjective and time-consuming. Inspection of civil engineering structures must include crack detection and categorization as...
Autores principales: | Qayyum, Waqas, Ehtisham, Rana, Bahrami, Alireza, Camp, Charles, Mir, Junaid, Ahmad, Afaq |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9866052/ https://www.ncbi.nlm.nih.gov/pubmed/36676563 http://dx.doi.org/10.3390/ma16020826 |
Ejemplares similares
-
Automatic Detection of Cracks in Cracked Tooth Based on Binary Classification Convolutional Neural Networks
por: Guo, Juncheng, et al.
Publicado: (2022) -
Crack Length Measurement Using Convolutional Neural Networks and Image Processing
por: Yuan, Yingtao, et al.
Publicado: (2021) -
Guided Wave-Convolutional Neural Network Based Fatigue Crack Diagnosis of Aircraft Structures †
por: Xu, Liang, et al.
Publicado: (2019) -
UAV-Driven Structural Crack Detection and Location Determination Using Convolutional Neural Networks
por: Choi, Daegyun, et al.
Publicado: (2021) -
Detection and Length Measurement of Cracks Captured in Low Definitions Using Convolutional Neural Networks
por: Kim, Jin-Young, et al.
Publicado: (2023)