Cargando…
The IgCAM CAR Regulates Gap Junction-Mediated Coupling on Embryonic Cardiomyocytes and Affects Their Beating Frequency
The IgCAM coxsackie–adenovirus receptor (CAR) is essential for embryonic heart development and electrical conduction in the mature heart. However, it is not well-understood how CAR exerts these effects at the cellular level. To address this question, we analyzed the spontaneous beating of cultured e...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9866089/ https://www.ncbi.nlm.nih.gov/pubmed/36675963 http://dx.doi.org/10.3390/life13010014 |
_version_ | 1784876002189508608 |
---|---|
author | Matthaeus, Claudia Jüttner, René Gotthardt, Michael Rathjen, Fritz G. |
author_facet | Matthaeus, Claudia Jüttner, René Gotthardt, Michael Rathjen, Fritz G. |
author_sort | Matthaeus, Claudia |
collection | PubMed |
description | The IgCAM coxsackie–adenovirus receptor (CAR) is essential for embryonic heart development and electrical conduction in the mature heart. However, it is not well-understood how CAR exerts these effects at the cellular level. To address this question, we analyzed the spontaneous beating of cultured embryonic hearts and cardiomyocytes from wild type and CAR knockout (KO) embryos. Surprisingly, in the absence of the CAR, cultured cardiomyocytes showed increased frequencies of beating and calcium cycling. Increased beatings of heart organ cultures were also induced by the application of reagents that bind to the extracellular region of the CAR, such as the adenovirus fiber knob. However, the calcium cycling machinery, including calcium extrusion via SERCA2 and NCX, was not disrupted in CAR KO cells. In contrast, CAR KO cardiomyocytes displayed size increases but decreased in the total numbers of membrane-localized Cx43 clusters. This was accompanied by improved cell–cell coupling between CAR KO cells, as demonstrated by increased intercellular dye diffusion. Our data indicate that the CAR may modulate the localization and oligomerization of Cx43 at the plasma membrane, which could in turn influence electrical propagation between cardiomyocytes via gap junctions. |
format | Online Article Text |
id | pubmed-9866089 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98660892023-01-22 The IgCAM CAR Regulates Gap Junction-Mediated Coupling on Embryonic Cardiomyocytes and Affects Their Beating Frequency Matthaeus, Claudia Jüttner, René Gotthardt, Michael Rathjen, Fritz G. Life (Basel) Article The IgCAM coxsackie–adenovirus receptor (CAR) is essential for embryonic heart development and electrical conduction in the mature heart. However, it is not well-understood how CAR exerts these effects at the cellular level. To address this question, we analyzed the spontaneous beating of cultured embryonic hearts and cardiomyocytes from wild type and CAR knockout (KO) embryos. Surprisingly, in the absence of the CAR, cultured cardiomyocytes showed increased frequencies of beating and calcium cycling. Increased beatings of heart organ cultures were also induced by the application of reagents that bind to the extracellular region of the CAR, such as the adenovirus fiber knob. However, the calcium cycling machinery, including calcium extrusion via SERCA2 and NCX, was not disrupted in CAR KO cells. In contrast, CAR KO cardiomyocytes displayed size increases but decreased in the total numbers of membrane-localized Cx43 clusters. This was accompanied by improved cell–cell coupling between CAR KO cells, as demonstrated by increased intercellular dye diffusion. Our data indicate that the CAR may modulate the localization and oligomerization of Cx43 at the plasma membrane, which could in turn influence electrical propagation between cardiomyocytes via gap junctions. MDPI 2022-12-21 /pmc/articles/PMC9866089/ /pubmed/36675963 http://dx.doi.org/10.3390/life13010014 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Matthaeus, Claudia Jüttner, René Gotthardt, Michael Rathjen, Fritz G. The IgCAM CAR Regulates Gap Junction-Mediated Coupling on Embryonic Cardiomyocytes and Affects Their Beating Frequency |
title | The IgCAM CAR Regulates Gap Junction-Mediated Coupling on Embryonic Cardiomyocytes and Affects Their Beating Frequency |
title_full | The IgCAM CAR Regulates Gap Junction-Mediated Coupling on Embryonic Cardiomyocytes and Affects Their Beating Frequency |
title_fullStr | The IgCAM CAR Regulates Gap Junction-Mediated Coupling on Embryonic Cardiomyocytes and Affects Their Beating Frequency |
title_full_unstemmed | The IgCAM CAR Regulates Gap Junction-Mediated Coupling on Embryonic Cardiomyocytes and Affects Their Beating Frequency |
title_short | The IgCAM CAR Regulates Gap Junction-Mediated Coupling on Embryonic Cardiomyocytes and Affects Their Beating Frequency |
title_sort | igcam car regulates gap junction-mediated coupling on embryonic cardiomyocytes and affects their beating frequency |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9866089/ https://www.ncbi.nlm.nih.gov/pubmed/36675963 http://dx.doi.org/10.3390/life13010014 |
work_keys_str_mv | AT matthaeusclaudia theigcamcarregulatesgapjunctionmediatedcouplingonembryoniccardiomyocytesandaffectstheirbeatingfrequency AT juttnerrene theigcamcarregulatesgapjunctionmediatedcouplingonembryoniccardiomyocytesandaffectstheirbeatingfrequency AT gotthardtmichael theigcamcarregulatesgapjunctionmediatedcouplingonembryoniccardiomyocytesandaffectstheirbeatingfrequency AT rathjenfritzg theigcamcarregulatesgapjunctionmediatedcouplingonembryoniccardiomyocytesandaffectstheirbeatingfrequency AT matthaeusclaudia igcamcarregulatesgapjunctionmediatedcouplingonembryoniccardiomyocytesandaffectstheirbeatingfrequency AT juttnerrene igcamcarregulatesgapjunctionmediatedcouplingonembryoniccardiomyocytesandaffectstheirbeatingfrequency AT gotthardtmichael igcamcarregulatesgapjunctionmediatedcouplingonembryoniccardiomyocytesandaffectstheirbeatingfrequency AT rathjenfritzg igcamcarregulatesgapjunctionmediatedcouplingonembryoniccardiomyocytesandaffectstheirbeatingfrequency |