Cargando…
Efficient Synthesis and In Vitro Hypoglycemic Activity of Rare Apigenin Glycosylation Derivatives
Apigenin is a natural flavonoid with significant biological activity, but poor solubility in water and low bioavailability limits its use in the food and pharmaceutical industries. In this paper, apigenin-7-O-β-(6″-O)-d-glucoside (AG) and apigenin-7-O-β-(6″-O-succinyl)-d-glucoside (SAG), rare apigen...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9866095/ https://www.ncbi.nlm.nih.gov/pubmed/36677592 http://dx.doi.org/10.3390/molecules28020533 |
Sumario: | Apigenin is a natural flavonoid with significant biological activity, but poor solubility in water and low bioavailability limits its use in the food and pharmaceutical industries. In this paper, apigenin-7-O-β-(6″-O)-d-glucoside (AG) and apigenin-7-O-β-(6″-O-succinyl)-d-glucoside (SAG), rare apigenin glycosyl and succinyl derivatives formed by the organic solvent-tolerant bacteria Bacillus licheniformis WNJ02 were used in a 10.0% DMSO (v/v) system. The water solubility of SAG was 174 times that of apigenin, which solved the application problem. In the biotransformation reaction, the conversion rate of apigenin (1.0 g/L) was 100% at 24 h, and the yield of SAG was 94.2%. Molecular docking showed that the hypoglycemic activity of apigenin, apigenin-7-glucosides (AG), and SAG was mediated by binding with amino acids of α-glucosidase. The molecular docking results were verified by an in vitro anti-α-glucosidase assay and glucose consumption assay of active compounds. SAG had significant anti-α-glucosidase activity, with an IC(50) of 0.485 mM and enhanced glucose consumption in HepG2 cells, which make it an excellent α-glucosidase inhibitor. |
---|