Cargando…
Influence of Channel Selection and Subject’s Age on the Performance of the Single Channel EEG-Based Automatic Sleep Staging Algorithms
The electroencephalogram (EEG) signal is a key parameter used to identify the different sleep stages present in an overnight sleep recording. Sleep staging is crucial in the diagnosis of several sleep disorders; however, the manual annotation of the EEG signal is a costly and time-consuming process....
Autores principales: | Nazih, Waleed, Shahin, Mostafa, Eldesouki, Mohamed I., Ahmed, Beena |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9866121/ https://www.ncbi.nlm.nih.gov/pubmed/36679711 http://dx.doi.org/10.3390/s23020899 |
Ejemplares similares
-
Evaluation of a Single-Channel EEG-Based Sleep Staging Algorithm
por: Zhao, Shanguang, et al.
Publicado: (2022) -
A Deep Learning Strategy for Automatic Sleep Staging Based on Two-Channel EEG Headband Data
por: Casciola, Amelia A., et al.
Publicado: (2021) -
Automatic sleep staging of single-channel EEG based on domain adversarial neural networks and domain self-attention
por: Gao, Dong-Rui, et al.
Publicado: (2023) -
REM Sleep Stage Identification with Raw Single-Channel EEG
por: Toban, Gabriel, et al.
Publicado: (2023) -
CAttSleepNet: Automatic End-to-End Sleep Staging Using Attention-Based Deep Neural Networks on Single-Channel EEG
por: Li, Tingting, et al.
Publicado: (2022)