Cargando…
Development of Magnetocardiograph without Magnetically Shielded Room Using High-Detectivity TMR Sensors
A magnetocardiograph that enables the clear observation of heart magnetic field mappings without magnetically shielded rooms at room temperatures has been successfully manufactured. Compared to widespread electrocardiographs, magnetocardiographs commonly have a higher spatial resolution, which is ex...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9866167/ https://www.ncbi.nlm.nih.gov/pubmed/36679442 http://dx.doi.org/10.3390/s23020646 |
_version_ | 1784876022000254976 |
---|---|
author | Kurashima, Koshi Kataoka, Makoto Nakano, Takafumi Fujiwara, Kosuke Kato, Seiichi Nakamura, Takenobu Yuzawa, Masaki Masuda, Masanori Ichimura, Kakeru Okatake, Shigeki Moriyasu, Yoshitaka Sugiyama, Kazuhiro Oogane, Mikihiko Ando, Yasuo Kumagai, Seiji Matsuzaki, Hitoshi Mochizuki, Hidenori |
author_facet | Kurashima, Koshi Kataoka, Makoto Nakano, Takafumi Fujiwara, Kosuke Kato, Seiichi Nakamura, Takenobu Yuzawa, Masaki Masuda, Masanori Ichimura, Kakeru Okatake, Shigeki Moriyasu, Yoshitaka Sugiyama, Kazuhiro Oogane, Mikihiko Ando, Yasuo Kumagai, Seiji Matsuzaki, Hitoshi Mochizuki, Hidenori |
author_sort | Kurashima, Koshi |
collection | PubMed |
description | A magnetocardiograph that enables the clear observation of heart magnetic field mappings without magnetically shielded rooms at room temperatures has been successfully manufactured. Compared to widespread electrocardiographs, magnetocardiographs commonly have a higher spatial resolution, which is expected to lead to early diagnoses of ischemic heart disease and high diagnostic accuracy of ventricular arrhythmia, which involves the risk of sudden death. However, as the conventional superconducting quantum interference device (SQUID) magnetocardiographs require large magnetically shielded rooms and huge running costs to cool the SQUID sensors, magnetocardiography is still unfamiliar technology. Here, in order to achieve the heart field detectivity of 1.0 pT without magnetically shielded rooms and enough magnetocardiography accuracy, we aimed to improve the detectivity of tunneling magnetoresistance (TMR) sensors and to decrease the environmental and sensor noises with a mathematical algorithm. The magnetic detectivity of the TMR sensors was confirmed to be 14.1 pT(rms) on average in the frequency band between 0.2 and 100 Hz in uncooled states, thanks to the original multilayer structure and the innovative pattern of free layers. By constructing a sensor array using 288 TMR sensors and applying the mathematical magnetic shield technology of signal space separation (SSS), we confirmed that SSS reduces the environmental magnetic noise by −73 dB, which overtakes the general triple magnetically shielded rooms. Moreover, applying digital processing that combined the signal average of heart magnetic fields for one minute and the projection operation, we succeeded in reducing the sensor noise by about −23 dB. The heart magnetic field resolution measured on a subject in a laboratory in an office building was 0.99 pT(rms) and obtained magnetocardiograms and current arrow maps as clear as the SQUID magnetocardiograph does in the QRS and ST segments. Upon utilizing its superior spatial resolution, this magnetocardiograph has the potential to be an important tool for the early diagnosis of ischemic heart disease and the risk management of sudden death triggered by ventricular arrhythmia. |
format | Online Article Text |
id | pubmed-9866167 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98661672023-01-22 Development of Magnetocardiograph without Magnetically Shielded Room Using High-Detectivity TMR Sensors Kurashima, Koshi Kataoka, Makoto Nakano, Takafumi Fujiwara, Kosuke Kato, Seiichi Nakamura, Takenobu Yuzawa, Masaki Masuda, Masanori Ichimura, Kakeru Okatake, Shigeki Moriyasu, Yoshitaka Sugiyama, Kazuhiro Oogane, Mikihiko Ando, Yasuo Kumagai, Seiji Matsuzaki, Hitoshi Mochizuki, Hidenori Sensors (Basel) Article A magnetocardiograph that enables the clear observation of heart magnetic field mappings without magnetically shielded rooms at room temperatures has been successfully manufactured. Compared to widespread electrocardiographs, magnetocardiographs commonly have a higher spatial resolution, which is expected to lead to early diagnoses of ischemic heart disease and high diagnostic accuracy of ventricular arrhythmia, which involves the risk of sudden death. However, as the conventional superconducting quantum interference device (SQUID) magnetocardiographs require large magnetically shielded rooms and huge running costs to cool the SQUID sensors, magnetocardiography is still unfamiliar technology. Here, in order to achieve the heart field detectivity of 1.0 pT without magnetically shielded rooms and enough magnetocardiography accuracy, we aimed to improve the detectivity of tunneling magnetoresistance (TMR) sensors and to decrease the environmental and sensor noises with a mathematical algorithm. The magnetic detectivity of the TMR sensors was confirmed to be 14.1 pT(rms) on average in the frequency band between 0.2 and 100 Hz in uncooled states, thanks to the original multilayer structure and the innovative pattern of free layers. By constructing a sensor array using 288 TMR sensors and applying the mathematical magnetic shield technology of signal space separation (SSS), we confirmed that SSS reduces the environmental magnetic noise by −73 dB, which overtakes the general triple magnetically shielded rooms. Moreover, applying digital processing that combined the signal average of heart magnetic fields for one minute and the projection operation, we succeeded in reducing the sensor noise by about −23 dB. The heart magnetic field resolution measured on a subject in a laboratory in an office building was 0.99 pT(rms) and obtained magnetocardiograms and current arrow maps as clear as the SQUID magnetocardiograph does in the QRS and ST segments. Upon utilizing its superior spatial resolution, this magnetocardiograph has the potential to be an important tool for the early diagnosis of ischemic heart disease and the risk management of sudden death triggered by ventricular arrhythmia. MDPI 2023-01-06 /pmc/articles/PMC9866167/ /pubmed/36679442 http://dx.doi.org/10.3390/s23020646 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kurashima, Koshi Kataoka, Makoto Nakano, Takafumi Fujiwara, Kosuke Kato, Seiichi Nakamura, Takenobu Yuzawa, Masaki Masuda, Masanori Ichimura, Kakeru Okatake, Shigeki Moriyasu, Yoshitaka Sugiyama, Kazuhiro Oogane, Mikihiko Ando, Yasuo Kumagai, Seiji Matsuzaki, Hitoshi Mochizuki, Hidenori Development of Magnetocardiograph without Magnetically Shielded Room Using High-Detectivity TMR Sensors |
title | Development of Magnetocardiograph without Magnetically Shielded Room Using High-Detectivity TMR Sensors |
title_full | Development of Magnetocardiograph without Magnetically Shielded Room Using High-Detectivity TMR Sensors |
title_fullStr | Development of Magnetocardiograph without Magnetically Shielded Room Using High-Detectivity TMR Sensors |
title_full_unstemmed | Development of Magnetocardiograph without Magnetically Shielded Room Using High-Detectivity TMR Sensors |
title_short | Development of Magnetocardiograph without Magnetically Shielded Room Using High-Detectivity TMR Sensors |
title_sort | development of magnetocardiograph without magnetically shielded room using high-detectivity tmr sensors |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9866167/ https://www.ncbi.nlm.nih.gov/pubmed/36679442 http://dx.doi.org/10.3390/s23020646 |
work_keys_str_mv | AT kurashimakoshi developmentofmagnetocardiographwithoutmagneticallyshieldedroomusinghighdetectivitytmrsensors AT kataokamakoto developmentofmagnetocardiographwithoutmagneticallyshieldedroomusinghighdetectivitytmrsensors AT nakanotakafumi developmentofmagnetocardiographwithoutmagneticallyshieldedroomusinghighdetectivitytmrsensors AT fujiwarakosuke developmentofmagnetocardiographwithoutmagneticallyshieldedroomusinghighdetectivitytmrsensors AT katoseiichi developmentofmagnetocardiographwithoutmagneticallyshieldedroomusinghighdetectivitytmrsensors AT nakamuratakenobu developmentofmagnetocardiographwithoutmagneticallyshieldedroomusinghighdetectivitytmrsensors AT yuzawamasaki developmentofmagnetocardiographwithoutmagneticallyshieldedroomusinghighdetectivitytmrsensors AT masudamasanori developmentofmagnetocardiographwithoutmagneticallyshieldedroomusinghighdetectivitytmrsensors AT ichimurakakeru developmentofmagnetocardiographwithoutmagneticallyshieldedroomusinghighdetectivitytmrsensors AT okatakeshigeki developmentofmagnetocardiographwithoutmagneticallyshieldedroomusinghighdetectivitytmrsensors AT moriyasuyoshitaka developmentofmagnetocardiographwithoutmagneticallyshieldedroomusinghighdetectivitytmrsensors AT sugiyamakazuhiro developmentofmagnetocardiographwithoutmagneticallyshieldedroomusinghighdetectivitytmrsensors AT ooganemikihiko developmentofmagnetocardiographwithoutmagneticallyshieldedroomusinghighdetectivitytmrsensors AT andoyasuo developmentofmagnetocardiographwithoutmagneticallyshieldedroomusinghighdetectivitytmrsensors AT kumagaiseiji developmentofmagnetocardiographwithoutmagneticallyshieldedroomusinghighdetectivitytmrsensors AT matsuzakihitoshi developmentofmagnetocardiographwithoutmagneticallyshieldedroomusinghighdetectivitytmrsensors AT mochizukihidenori developmentofmagnetocardiographwithoutmagneticallyshieldedroomusinghighdetectivitytmrsensors |