Cargando…
Bioactive Glass-Ceramic Scaffolds Coated with Hyaluronic Acid–Fatty Acid Conjugates: A Feasibility Study †
Promoting bone healing is a key challenge in our society that can be tackled by developing new implantable biomaterials provided with regenerative properties. In this work, the coating of three-dimensional porous glass-derived scaffolds with hyaluronic acid (HA)-fatty acids was investigated for the...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9866274/ https://www.ncbi.nlm.nih.gov/pubmed/36662073 http://dx.doi.org/10.3390/jfb14010026 |
Sumario: | Promoting bone healing is a key challenge in our society that can be tackled by developing new implantable biomaterials provided with regenerative properties. In this work, the coating of three-dimensional porous glass-derived scaffolds with hyaluronic acid (HA)-fatty acids was investigated for the first time. The starting scaffolds, based on bioactive silicate glass, were produced by foam replication followed by sintering; then, HA-palmitate and HA-oleate conjugate coatings were deposited on the scaffold struts through a dipping procedure. FT-IR analysis confirmed the successful deposition of the coatings on the surface and struts of the scaffolds, the foam-like architecture of which was maintained as assessed by SEM investigations. The in vitro bioactivity of the HA–fatty-acid-coated scaffolds was studied by immersion tests in simulated body fluid and the subsequent evaluation of hydroxyapatite formation. The deposition of the polymeric coating did not inhibit the apatite-forming ability of scaffolds, as revealed by the formation of nanostructured hydroxyapatite agglomerates 48 h from immersion. These promising results motivate further investigation of these novel bioactive systems, which are expected to combine the bone-bonding properties of the glass with the wound-healing promotion carried out by the polymeric conjugates. |
---|