Cargando…
Biodegradable Scaffolds for Vascular Regeneration Based on Electrospun Poly(L-Lactide-co-Glycolide)/Poly(Isosorbide Sebacate) Fibers
Vascular regeneration is a complex process, additionally limited by the low regeneration potential of blood vessels. Hence, current research is focused on the design of artificial materials that combine biocompatibility with a certain rate of biodegradability and mechanical robustness. In this paper...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9866311/ https://www.ncbi.nlm.nih.gov/pubmed/36674709 http://dx.doi.org/10.3390/ijms24021190 |
_version_ | 1784876058659520512 |
---|---|
author | Śmiga-Matuszowicz, Monika Włodarczyk, Jakub Skorupa, Małgorzata Czerwińska-Główka, Dominika Fołta, Kaja Pastusiak, Małgorzata Adamiec-Organiściok, Małgorzata Skonieczna, Magdalena Turczyn, Roman Sobota, Michał Krukiewicz, Katarzyna |
author_facet | Śmiga-Matuszowicz, Monika Włodarczyk, Jakub Skorupa, Małgorzata Czerwińska-Główka, Dominika Fołta, Kaja Pastusiak, Małgorzata Adamiec-Organiściok, Małgorzata Skonieczna, Magdalena Turczyn, Roman Sobota, Michał Krukiewicz, Katarzyna |
author_sort | Śmiga-Matuszowicz, Monika |
collection | PubMed |
description | Vascular regeneration is a complex process, additionally limited by the low regeneration potential of blood vessels. Hence, current research is focused on the design of artificial materials that combine biocompatibility with a certain rate of biodegradability and mechanical robustness. In this paper, we have introduced a scaffold material made of poly(L-lactide-co-glycolide)/poly(isosorbide sebacate) (PLGA/PISEB) fibers fabricated in the course of an electrospinning process, and confirmed its biocompatibility towards human umbilical vein endothelial cells (HUVEC). The resulting material was characterized by a bimodal distribution of fiber diameters, with the median of 1.25 µm and 4.75 µm. Genotyping of HUVEC cells collected after 48 h of incubations on the surface of PLGA/PISEB scaffolds showed a potentially pro-angiogenic expression profile, as well as anti-inflammatory effects of this material. Over the course of a 12-week-long hydrolytic degradation process, PLGA/PISEB fibers were found to swell and disintegrate, resulting in the formation of highly developed structures resembling seaweeds. It is expected that the change in the scaffold structure should have a positive effect on blood vessel regeneration, by allowing cells to penetrate the scaffold and grow within a 3D structure of PLGA/PISEB, as well as stabilizing newly-formed endothelium during hydrolytic expansion. |
format | Online Article Text |
id | pubmed-9866311 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98663112023-01-22 Biodegradable Scaffolds for Vascular Regeneration Based on Electrospun Poly(L-Lactide-co-Glycolide)/Poly(Isosorbide Sebacate) Fibers Śmiga-Matuszowicz, Monika Włodarczyk, Jakub Skorupa, Małgorzata Czerwińska-Główka, Dominika Fołta, Kaja Pastusiak, Małgorzata Adamiec-Organiściok, Małgorzata Skonieczna, Magdalena Turczyn, Roman Sobota, Michał Krukiewicz, Katarzyna Int J Mol Sci Article Vascular regeneration is a complex process, additionally limited by the low regeneration potential of blood vessels. Hence, current research is focused on the design of artificial materials that combine biocompatibility with a certain rate of biodegradability and mechanical robustness. In this paper, we have introduced a scaffold material made of poly(L-lactide-co-glycolide)/poly(isosorbide sebacate) (PLGA/PISEB) fibers fabricated in the course of an electrospinning process, and confirmed its biocompatibility towards human umbilical vein endothelial cells (HUVEC). The resulting material was characterized by a bimodal distribution of fiber diameters, with the median of 1.25 µm and 4.75 µm. Genotyping of HUVEC cells collected after 48 h of incubations on the surface of PLGA/PISEB scaffolds showed a potentially pro-angiogenic expression profile, as well as anti-inflammatory effects of this material. Over the course of a 12-week-long hydrolytic degradation process, PLGA/PISEB fibers were found to swell and disintegrate, resulting in the formation of highly developed structures resembling seaweeds. It is expected that the change in the scaffold structure should have a positive effect on blood vessel regeneration, by allowing cells to penetrate the scaffold and grow within a 3D structure of PLGA/PISEB, as well as stabilizing newly-formed endothelium during hydrolytic expansion. MDPI 2023-01-07 /pmc/articles/PMC9866311/ /pubmed/36674709 http://dx.doi.org/10.3390/ijms24021190 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Śmiga-Matuszowicz, Monika Włodarczyk, Jakub Skorupa, Małgorzata Czerwińska-Główka, Dominika Fołta, Kaja Pastusiak, Małgorzata Adamiec-Organiściok, Małgorzata Skonieczna, Magdalena Turczyn, Roman Sobota, Michał Krukiewicz, Katarzyna Biodegradable Scaffolds for Vascular Regeneration Based on Electrospun Poly(L-Lactide-co-Glycolide)/Poly(Isosorbide Sebacate) Fibers |
title | Biodegradable Scaffolds for Vascular Regeneration Based on Electrospun Poly(L-Lactide-co-Glycolide)/Poly(Isosorbide Sebacate) Fibers |
title_full | Biodegradable Scaffolds for Vascular Regeneration Based on Electrospun Poly(L-Lactide-co-Glycolide)/Poly(Isosorbide Sebacate) Fibers |
title_fullStr | Biodegradable Scaffolds for Vascular Regeneration Based on Electrospun Poly(L-Lactide-co-Glycolide)/Poly(Isosorbide Sebacate) Fibers |
title_full_unstemmed | Biodegradable Scaffolds for Vascular Regeneration Based on Electrospun Poly(L-Lactide-co-Glycolide)/Poly(Isosorbide Sebacate) Fibers |
title_short | Biodegradable Scaffolds for Vascular Regeneration Based on Electrospun Poly(L-Lactide-co-Glycolide)/Poly(Isosorbide Sebacate) Fibers |
title_sort | biodegradable scaffolds for vascular regeneration based on electrospun poly(l-lactide-co-glycolide)/poly(isosorbide sebacate) fibers |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9866311/ https://www.ncbi.nlm.nih.gov/pubmed/36674709 http://dx.doi.org/10.3390/ijms24021190 |
work_keys_str_mv | AT smigamatuszowiczmonika biodegradablescaffoldsforvascularregenerationbasedonelectrospunpolyllactidecoglycolidepolyisosorbidesebacatefibers AT włodarczykjakub biodegradablescaffoldsforvascularregenerationbasedonelectrospunpolyllactidecoglycolidepolyisosorbidesebacatefibers AT skorupamałgorzata biodegradablescaffoldsforvascularregenerationbasedonelectrospunpolyllactidecoglycolidepolyisosorbidesebacatefibers AT czerwinskagłowkadominika biodegradablescaffoldsforvascularregenerationbasedonelectrospunpolyllactidecoglycolidepolyisosorbidesebacatefibers AT fołtakaja biodegradablescaffoldsforvascularregenerationbasedonelectrospunpolyllactidecoglycolidepolyisosorbidesebacatefibers AT pastusiakmałgorzata biodegradablescaffoldsforvascularregenerationbasedonelectrospunpolyllactidecoglycolidepolyisosorbidesebacatefibers AT adamiecorganisciokmałgorzata biodegradablescaffoldsforvascularregenerationbasedonelectrospunpolyllactidecoglycolidepolyisosorbidesebacatefibers AT skoniecznamagdalena biodegradablescaffoldsforvascularregenerationbasedonelectrospunpolyllactidecoglycolidepolyisosorbidesebacatefibers AT turczynroman biodegradablescaffoldsforvascularregenerationbasedonelectrospunpolyllactidecoglycolidepolyisosorbidesebacatefibers AT sobotamichał biodegradablescaffoldsforvascularregenerationbasedonelectrospunpolyllactidecoglycolidepolyisosorbidesebacatefibers AT krukiewiczkatarzyna biodegradablescaffoldsforvascularregenerationbasedonelectrospunpolyllactidecoglycolidepolyisosorbidesebacatefibers |