Cargando…
Bearing Fault Diagnosis Using a Hybrid Fuzzy V-Structure Fault Estimator Scheme
Bearings are critical components of motors. However, they can cause several issues. Proper and timely detection of faults in the bearings can play a decisive role in reducing damage to the entire system, thereby reducing economic losses. In this study, a hybrid fuzzy V-structure fuzzy fault estimato...
Autores principales: | Piltan, Farzin, Kim, Jong-Myon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9866363/ https://www.ncbi.nlm.nih.gov/pubmed/36679818 http://dx.doi.org/10.3390/s23021021 |
Ejemplares similares
-
Deep Learning-Based Adaptive Neural-Fuzzy Structure Scheme for Bearing Fault Pattern Recognition and Crack Size Identification
por: Piltan, Farzin, et al.
Publicado: (2021) -
Bearing Fault Diagnosis Using an Extended Variable Structure Feedback Linearization Observer
por: Piltan, Farzin, et al.
Publicado: (2018) -
Bearing Fault Diagnosis by a Robust Higher-Order Super-Twisting Sliding Mode Observer
por: Piltan, Farzin, et al.
Publicado: (2018) -
A Deep Autoencoder-Based Convolution Neural Network Framework for Bearing Fault Classification in Induction Motors
por: Toma, Rafia Nishat, et al.
Publicado: (2021) -
Classification Framework of the Bearing Faults of an Induction Motor Using Wavelet Scattering Transform-Based Features
por: Toma, Rafia Nishat, et al.
Publicado: (2022)