Cargando…

Predictive Model for Preeclampsia Combining sFlt-1, PlGF, NT-proBNP, and Uric Acid as Biomarkers

N-terminal pro-brain natriuretic peptide (NT-proBNP) and uric acid are elevated in pregnancies with preeclampsia (PE). Short-term prediction of PE using angiogenic factors has many false-positive results. Our objective was to validate a machine-learning model (MLM) to predict PE in patients with cli...

Descripción completa

Detalles Bibliográficos
Autores principales: Garrido-Giménez, Carmen, Cruz-Lemini, Mónica, Álvarez, Francisco V., Nan, Madalina Nicoleta, Carretero, Francisco, Fernández-Oliva, Antonio, Mora, Josefina, Sánchez-García, Olga, García-Osuna, Álvaro, Alijotas-Reig, Jaume, Llurba, Elisa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9866466/
https://www.ncbi.nlm.nih.gov/pubmed/36675361
http://dx.doi.org/10.3390/jcm12020431
_version_ 1784876098788524032
author Garrido-Giménez, Carmen
Cruz-Lemini, Mónica
Álvarez, Francisco V.
Nan, Madalina Nicoleta
Carretero, Francisco
Fernández-Oliva, Antonio
Mora, Josefina
Sánchez-García, Olga
García-Osuna, Álvaro
Alijotas-Reig, Jaume
Llurba, Elisa
author_facet Garrido-Giménez, Carmen
Cruz-Lemini, Mónica
Álvarez, Francisco V.
Nan, Madalina Nicoleta
Carretero, Francisco
Fernández-Oliva, Antonio
Mora, Josefina
Sánchez-García, Olga
García-Osuna, Álvaro
Alijotas-Reig, Jaume
Llurba, Elisa
author_sort Garrido-Giménez, Carmen
collection PubMed
description N-terminal pro-brain natriuretic peptide (NT-proBNP) and uric acid are elevated in pregnancies with preeclampsia (PE). Short-term prediction of PE using angiogenic factors has many false-positive results. Our objective was to validate a machine-learning model (MLM) to predict PE in patients with clinical suspicion, and evaluate if the model performed better than the sFlt-1/PlGF ratio alone. A multicentric cohort study of pregnancies with suspected PE between 24(+0) and 36(+6) weeks was used. The MLM included six predictors: gestational age, chronic hypertension, sFlt-1, PlGF, NT-proBNP, and uric acid. A total of 936 serum samples from 597 women were included. The PPV of the MLM for PE following 6 weeks was 83.1% (95% CI 78.5–88.2) compared to 72.8% (95% CI 67.4–78.4) for the sFlt-1/PlGF ratio. The specificity of the model was better; 94.9% vs. 91%, respectively. The AUC was significantly improved compared to the ratio alone [0.941 (95% CI 0.926–0.956) vs. 0.901 (95% CI 0.880–0.921), p < 0.05]. For prediction of preterm PE within 1 week, the AUC of the MLM was 0.954 (95% CI 0.937–0.968); significantly greater than the ratio alone [0.914 (95% CI 0.890–0.934), p < 0.01]. To conclude, an MLM combining the sFlt-1/PlGF ratio, NT-proBNP, and uric acid performs better to predict preterm PE compared to the sFlt-1/PlGF ratio alone, potentially increasing clinical precision.
format Online
Article
Text
id pubmed-9866466
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-98664662023-01-22 Predictive Model for Preeclampsia Combining sFlt-1, PlGF, NT-proBNP, and Uric Acid as Biomarkers Garrido-Giménez, Carmen Cruz-Lemini, Mónica Álvarez, Francisco V. Nan, Madalina Nicoleta Carretero, Francisco Fernández-Oliva, Antonio Mora, Josefina Sánchez-García, Olga García-Osuna, Álvaro Alijotas-Reig, Jaume Llurba, Elisa J Clin Med Article N-terminal pro-brain natriuretic peptide (NT-proBNP) and uric acid are elevated in pregnancies with preeclampsia (PE). Short-term prediction of PE using angiogenic factors has many false-positive results. Our objective was to validate a machine-learning model (MLM) to predict PE in patients with clinical suspicion, and evaluate if the model performed better than the sFlt-1/PlGF ratio alone. A multicentric cohort study of pregnancies with suspected PE between 24(+0) and 36(+6) weeks was used. The MLM included six predictors: gestational age, chronic hypertension, sFlt-1, PlGF, NT-proBNP, and uric acid. A total of 936 serum samples from 597 women were included. The PPV of the MLM for PE following 6 weeks was 83.1% (95% CI 78.5–88.2) compared to 72.8% (95% CI 67.4–78.4) for the sFlt-1/PlGF ratio. The specificity of the model was better; 94.9% vs. 91%, respectively. The AUC was significantly improved compared to the ratio alone [0.941 (95% CI 0.926–0.956) vs. 0.901 (95% CI 0.880–0.921), p < 0.05]. For prediction of preterm PE within 1 week, the AUC of the MLM was 0.954 (95% CI 0.937–0.968); significantly greater than the ratio alone [0.914 (95% CI 0.890–0.934), p < 0.01]. To conclude, an MLM combining the sFlt-1/PlGF ratio, NT-proBNP, and uric acid performs better to predict preterm PE compared to the sFlt-1/PlGF ratio alone, potentially increasing clinical precision. MDPI 2023-01-05 /pmc/articles/PMC9866466/ /pubmed/36675361 http://dx.doi.org/10.3390/jcm12020431 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Garrido-Giménez, Carmen
Cruz-Lemini, Mónica
Álvarez, Francisco V.
Nan, Madalina Nicoleta
Carretero, Francisco
Fernández-Oliva, Antonio
Mora, Josefina
Sánchez-García, Olga
García-Osuna, Álvaro
Alijotas-Reig, Jaume
Llurba, Elisa
Predictive Model for Preeclampsia Combining sFlt-1, PlGF, NT-proBNP, and Uric Acid as Biomarkers
title Predictive Model for Preeclampsia Combining sFlt-1, PlGF, NT-proBNP, and Uric Acid as Biomarkers
title_full Predictive Model for Preeclampsia Combining sFlt-1, PlGF, NT-proBNP, and Uric Acid as Biomarkers
title_fullStr Predictive Model for Preeclampsia Combining sFlt-1, PlGF, NT-proBNP, and Uric Acid as Biomarkers
title_full_unstemmed Predictive Model for Preeclampsia Combining sFlt-1, PlGF, NT-proBNP, and Uric Acid as Biomarkers
title_short Predictive Model for Preeclampsia Combining sFlt-1, PlGF, NT-proBNP, and Uric Acid as Biomarkers
title_sort predictive model for preeclampsia combining sflt-1, plgf, nt-probnp, and uric acid as biomarkers
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9866466/
https://www.ncbi.nlm.nih.gov/pubmed/36675361
http://dx.doi.org/10.3390/jcm12020431
work_keys_str_mv AT garridogimenezcarmen predictivemodelforpreeclampsiacombiningsflt1plgfntprobnpanduricacidasbiomarkers
AT cruzleminimonica predictivemodelforpreeclampsiacombiningsflt1plgfntprobnpanduricacidasbiomarkers
AT alvarezfranciscov predictivemodelforpreeclampsiacombiningsflt1plgfntprobnpanduricacidasbiomarkers
AT nanmadalinanicoleta predictivemodelforpreeclampsiacombiningsflt1plgfntprobnpanduricacidasbiomarkers
AT carreterofrancisco predictivemodelforpreeclampsiacombiningsflt1plgfntprobnpanduricacidasbiomarkers
AT fernandezolivaantonio predictivemodelforpreeclampsiacombiningsflt1plgfntprobnpanduricacidasbiomarkers
AT morajosefina predictivemodelforpreeclampsiacombiningsflt1plgfntprobnpanduricacidasbiomarkers
AT sanchezgarciaolga predictivemodelforpreeclampsiacombiningsflt1plgfntprobnpanduricacidasbiomarkers
AT garciaosunaalvaro predictivemodelforpreeclampsiacombiningsflt1plgfntprobnpanduricacidasbiomarkers
AT alijotasreigjaume predictivemodelforpreeclampsiacombiningsflt1plgfntprobnpanduricacidasbiomarkers
AT llurbaelisa predictivemodelforpreeclampsiacombiningsflt1plgfntprobnpanduricacidasbiomarkers
AT predictivemodelforpreeclampsiacombiningsflt1plgfntprobnpanduricacidasbiomarkers