Cargando…
Predictive Model for Preeclampsia Combining sFlt-1, PlGF, NT-proBNP, and Uric Acid as Biomarkers
N-terminal pro-brain natriuretic peptide (NT-proBNP) and uric acid are elevated in pregnancies with preeclampsia (PE). Short-term prediction of PE using angiogenic factors has many false-positive results. Our objective was to validate a machine-learning model (MLM) to predict PE in patients with cli...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9866466/ https://www.ncbi.nlm.nih.gov/pubmed/36675361 http://dx.doi.org/10.3390/jcm12020431 |
_version_ | 1784876098788524032 |
---|---|
author | Garrido-Giménez, Carmen Cruz-Lemini, Mónica Álvarez, Francisco V. Nan, Madalina Nicoleta Carretero, Francisco Fernández-Oliva, Antonio Mora, Josefina Sánchez-García, Olga García-Osuna, Álvaro Alijotas-Reig, Jaume Llurba, Elisa |
author_facet | Garrido-Giménez, Carmen Cruz-Lemini, Mónica Álvarez, Francisco V. Nan, Madalina Nicoleta Carretero, Francisco Fernández-Oliva, Antonio Mora, Josefina Sánchez-García, Olga García-Osuna, Álvaro Alijotas-Reig, Jaume Llurba, Elisa |
author_sort | Garrido-Giménez, Carmen |
collection | PubMed |
description | N-terminal pro-brain natriuretic peptide (NT-proBNP) and uric acid are elevated in pregnancies with preeclampsia (PE). Short-term prediction of PE using angiogenic factors has many false-positive results. Our objective was to validate a machine-learning model (MLM) to predict PE in patients with clinical suspicion, and evaluate if the model performed better than the sFlt-1/PlGF ratio alone. A multicentric cohort study of pregnancies with suspected PE between 24(+0) and 36(+6) weeks was used. The MLM included six predictors: gestational age, chronic hypertension, sFlt-1, PlGF, NT-proBNP, and uric acid. A total of 936 serum samples from 597 women were included. The PPV of the MLM for PE following 6 weeks was 83.1% (95% CI 78.5–88.2) compared to 72.8% (95% CI 67.4–78.4) for the sFlt-1/PlGF ratio. The specificity of the model was better; 94.9% vs. 91%, respectively. The AUC was significantly improved compared to the ratio alone [0.941 (95% CI 0.926–0.956) vs. 0.901 (95% CI 0.880–0.921), p < 0.05]. For prediction of preterm PE within 1 week, the AUC of the MLM was 0.954 (95% CI 0.937–0.968); significantly greater than the ratio alone [0.914 (95% CI 0.890–0.934), p < 0.01]. To conclude, an MLM combining the sFlt-1/PlGF ratio, NT-proBNP, and uric acid performs better to predict preterm PE compared to the sFlt-1/PlGF ratio alone, potentially increasing clinical precision. |
format | Online Article Text |
id | pubmed-9866466 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98664662023-01-22 Predictive Model for Preeclampsia Combining sFlt-1, PlGF, NT-proBNP, and Uric Acid as Biomarkers Garrido-Giménez, Carmen Cruz-Lemini, Mónica Álvarez, Francisco V. Nan, Madalina Nicoleta Carretero, Francisco Fernández-Oliva, Antonio Mora, Josefina Sánchez-García, Olga García-Osuna, Álvaro Alijotas-Reig, Jaume Llurba, Elisa J Clin Med Article N-terminal pro-brain natriuretic peptide (NT-proBNP) and uric acid are elevated in pregnancies with preeclampsia (PE). Short-term prediction of PE using angiogenic factors has many false-positive results. Our objective was to validate a machine-learning model (MLM) to predict PE in patients with clinical suspicion, and evaluate if the model performed better than the sFlt-1/PlGF ratio alone. A multicentric cohort study of pregnancies with suspected PE between 24(+0) and 36(+6) weeks was used. The MLM included six predictors: gestational age, chronic hypertension, sFlt-1, PlGF, NT-proBNP, and uric acid. A total of 936 serum samples from 597 women were included. The PPV of the MLM for PE following 6 weeks was 83.1% (95% CI 78.5–88.2) compared to 72.8% (95% CI 67.4–78.4) for the sFlt-1/PlGF ratio. The specificity of the model was better; 94.9% vs. 91%, respectively. The AUC was significantly improved compared to the ratio alone [0.941 (95% CI 0.926–0.956) vs. 0.901 (95% CI 0.880–0.921), p < 0.05]. For prediction of preterm PE within 1 week, the AUC of the MLM was 0.954 (95% CI 0.937–0.968); significantly greater than the ratio alone [0.914 (95% CI 0.890–0.934), p < 0.01]. To conclude, an MLM combining the sFlt-1/PlGF ratio, NT-proBNP, and uric acid performs better to predict preterm PE compared to the sFlt-1/PlGF ratio alone, potentially increasing clinical precision. MDPI 2023-01-05 /pmc/articles/PMC9866466/ /pubmed/36675361 http://dx.doi.org/10.3390/jcm12020431 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Garrido-Giménez, Carmen Cruz-Lemini, Mónica Álvarez, Francisco V. Nan, Madalina Nicoleta Carretero, Francisco Fernández-Oliva, Antonio Mora, Josefina Sánchez-García, Olga García-Osuna, Álvaro Alijotas-Reig, Jaume Llurba, Elisa Predictive Model for Preeclampsia Combining sFlt-1, PlGF, NT-proBNP, and Uric Acid as Biomarkers |
title | Predictive Model for Preeclampsia Combining sFlt-1, PlGF, NT-proBNP, and Uric Acid as Biomarkers |
title_full | Predictive Model for Preeclampsia Combining sFlt-1, PlGF, NT-proBNP, and Uric Acid as Biomarkers |
title_fullStr | Predictive Model for Preeclampsia Combining sFlt-1, PlGF, NT-proBNP, and Uric Acid as Biomarkers |
title_full_unstemmed | Predictive Model for Preeclampsia Combining sFlt-1, PlGF, NT-proBNP, and Uric Acid as Biomarkers |
title_short | Predictive Model for Preeclampsia Combining sFlt-1, PlGF, NT-proBNP, and Uric Acid as Biomarkers |
title_sort | predictive model for preeclampsia combining sflt-1, plgf, nt-probnp, and uric acid as biomarkers |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9866466/ https://www.ncbi.nlm.nih.gov/pubmed/36675361 http://dx.doi.org/10.3390/jcm12020431 |
work_keys_str_mv | AT garridogimenezcarmen predictivemodelforpreeclampsiacombiningsflt1plgfntprobnpanduricacidasbiomarkers AT cruzleminimonica predictivemodelforpreeclampsiacombiningsflt1plgfntprobnpanduricacidasbiomarkers AT alvarezfranciscov predictivemodelforpreeclampsiacombiningsflt1plgfntprobnpanduricacidasbiomarkers AT nanmadalinanicoleta predictivemodelforpreeclampsiacombiningsflt1plgfntprobnpanduricacidasbiomarkers AT carreterofrancisco predictivemodelforpreeclampsiacombiningsflt1plgfntprobnpanduricacidasbiomarkers AT fernandezolivaantonio predictivemodelforpreeclampsiacombiningsflt1plgfntprobnpanduricacidasbiomarkers AT morajosefina predictivemodelforpreeclampsiacombiningsflt1plgfntprobnpanduricacidasbiomarkers AT sanchezgarciaolga predictivemodelforpreeclampsiacombiningsflt1plgfntprobnpanduricacidasbiomarkers AT garciaosunaalvaro predictivemodelforpreeclampsiacombiningsflt1plgfntprobnpanduricacidasbiomarkers AT alijotasreigjaume predictivemodelforpreeclampsiacombiningsflt1plgfntprobnpanduricacidasbiomarkers AT llurbaelisa predictivemodelforpreeclampsiacombiningsflt1plgfntprobnpanduricacidasbiomarkers AT predictivemodelforpreeclampsiacombiningsflt1plgfntprobnpanduricacidasbiomarkers |