Cargando…
Assessment of Dye-Absorbed Eggshell Membrane Composites as Solid Polymer Electrolyte of Fuel Cells
Recently, polymer electrolytes have been developed for high-performance and eco-friendly fuel cells. Among the candidates, eggshell membrane (ESM) has been promising because of its abundance to assemble various energy devices with low cost and its absorption ability of organic materials. In this wor...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9866477/ https://www.ncbi.nlm.nih.gov/pubmed/36676922 http://dx.doi.org/10.3390/membranes13010115 |
Sumario: | Recently, polymer electrolytes have been developed for high-performance and eco-friendly fuel cells. Among the candidates, eggshell membrane (ESM) has been promising because of its abundance to assemble various energy devices with low cost and its absorption ability of organic materials. In this work, we investigated fuel cells that included ESM-absorbing xanthene-, triphenylmethane-, and azo-type tar dye, which contained abundant hydrophilic groups, as polymer electrolytes. We found out two points: (1) that the fuel cells that included ESM-absorbing xanthene-type dye generated the highest I–V performance, and (2) the basic molecular structures of the tar dyes determined the correlation of the maximum power and proton conductivities. |
---|