Cargando…

Ultimate and Deflection Performance of Concrete Beams Strengthened in Flexure with Basalt-Textile-Reinforced Polymer Mortar

This paper presents an investigation into the ultimate and serviceability behavior of concrete beams strengthened in flexure with basalt-textile-reinforced polymer mortar (BTRM). The bond performance at the interface between the BTRM and concrete was studied by performing single shear tests, and the...

Descripción completa

Detalles Bibliográficos
Autores principales: Deng, Jun, Zhong, Minting, Zhang, Zhuojian, Zhu, Miaochang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9866480/
https://www.ncbi.nlm.nih.gov/pubmed/36679325
http://dx.doi.org/10.3390/polym15020445
Descripción
Sumario:This paper presents an investigation into the ultimate and serviceability behavior of concrete beams strengthened in flexure with basalt-textile-reinforced polymer mortar (BTRM). The bond performance at the interface between the BTRM and concrete was studied by performing single shear tests, and the effectiveness of using an adhesion promoter and impregnated resin for bond enhancement was explored. The results suggested that using an adhesion promoter and impregnated resin can improve the interfacial stress transfer and ensure the tensile failure of the basalt textile in BTRM. Afterward, four-point bending tests were conducted to study the flexural performance of strengthened beams. It was found that the flexural strength of strengthened beams increased with the amount of textile, and the strength increase was more prominent for the strengthened beams with end anchorages. The increase in the failure force was up to 37% for the beam strengthened with five layers of the textile and an end anchorage. The calculated flexural strength exhibited a percentage error of no more than 7% compared to the test results. In addition, the Bischoff-I Equation can closely estimate the effective moment of inertia and provide an accurate prediction of deflection for strengthened beams.