Cargando…
Influence of the Type of Bone Cement Used in Two-Stage Exchange Arthroplasty for Chronic Periarticular Joint Infection on the Spacer Replacement and Reinfection Rate
Background: Antibiotic-loaded bone cement (ALBC) spacers are used in the first stage when treating periprosthetic joint infection (PJI). This study aimed to investigate whether a spacer made from commercial ALBC or plain bone cement with additional antibiotics could affect the spacer exchange rate b...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9866783/ https://www.ncbi.nlm.nih.gov/pubmed/36675529 http://dx.doi.org/10.3390/jcm12020600 |
Sumario: | Background: Antibiotic-loaded bone cement (ALBC) spacers are used in the first stage when treating periprosthetic joint infection (PJI). This study aimed to investigate whether a spacer made from commercial ALBC or plain bone cement with additional antibiotics could affect the spacer exchange rate before reimplantation. Methods: Patients undergoing two-stage exchange arthroplasty due to chronic PJI from January 2014 to August 2021 were retrospectively reviewed. The exclusion criteria included arthroplasty in the setting of septic arthritis, megaprosthesis, atypical pathogen infection, spacer placement unrelated to PJI, and spacer exchange due to mechanical complications. The patient demographics, brand of cement, and microbiology were recorded manually. The primary outcome was the incidence of spacer exchange due to persistent infection and the secondary outcome was the incidence of reinfection after reimplantation. A multivariate logistic regression analysis and Chi-square test were conducted to identify the effect of cement type on the spacer exchange. Results: A total of 334 patients underwent two-stage exchange arthroplasty for PJI. The spacer exchange rates in the commercial and non-commercial ALBC groups were 6.4% and 25.1%, respectively (p = 0.004). After controlling for confounding factors, there were significant differences between the commercial group and non-commercial groups in the spacer exchange rate (adjusted OR = 0.25; 95% CI = 0.72–0.87, p = 0.029). The use of commercial ALBC was not associated with a lower reinfection rate after reimplantation (p = 0.160). Conclusions: In a two-stage exchange arthroplasty scenario, the spacer comprised of commercial ALBC resulted in a lower spacer exchange rate than the plain bone cement, both of which had additional antibiotics. However, the use of commercial ALBC was not associated with a lower incidence of reinfection following reimplantation. |
---|