Cargando…

Ruthenium Complex HB324 Induces Apoptosis via Mitochondrial Pathway with an Upregulation of Harakiri and Overcomes Cisplatin Resistance in Neuroblastoma Cells In Vitro

Ruthenium(II) complexes with N-heterocyclic carbene (NHC) ligands have recently attracted attention as novel chemotherapeutic agents. The complex HB324 was intensively studied as an apoptosis-inducing compound in resistant cell lines. HB324 induced apoptosis via mitochondrial pathways. Of particular...

Descripción completa

Detalles Bibliográficos
Autores principales: Wilke, Nicola L., Burmeister, Hilke, Frias, Corazon, Ott, Ingo, Prokop, Aram
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9866957/
https://www.ncbi.nlm.nih.gov/pubmed/36674465
http://dx.doi.org/10.3390/ijms24020952
Descripción
Sumario:Ruthenium(II) complexes with N-heterocyclic carbene (NHC) ligands have recently attracted attention as novel chemotherapeutic agents. The complex HB324 was intensively studied as an apoptosis-inducing compound in resistant cell lines. HB324 induced apoptosis via mitochondrial pathways. Of particular interest is the upregulation of the Harakiri resistance protein, which inhibits the anti-apoptotic and death repressor proteins Bcl-2 (B-cell lymphoma 2) and BCL-xL (B-cell lymphoma-extra large). Moreover, HB324 showed synergistic activity with various established anticancer drugs and overcame resistance in several cell lines, such as neuroblastoma cells. In conclusion, HB324 showed promising potential as a novel anticancer agent in vitro, suggesting further investigations on this and other preclinical ruthenium drug candidates.