Cargando…
Event-Based Optical Flow Estimation with Spatio-Temporal Backpropagation Trained Spiking Neural Network
The advantages of an event camera, such as low power consumption, large dynamic range, and low data redundancy, enable it to shine in extreme environments where traditional image sensors are not competent, especially in high-speed moving target capture and extreme lighting conditions. Optical flow r...
Autores principales: | Zhang, Yisa, Lv, Hengyi, Zhao, Yuchen, Feng, Yang, Liu, Hailong, Bi, Guoling |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9867051/ https://www.ncbi.nlm.nih.gov/pubmed/36677264 http://dx.doi.org/10.3390/mi14010203 |
Ejemplares similares
-
Spatio-Temporal Backpropagation for Training High-Performance Spiking Neural Networks
por: Wu, Yujie, et al.
Publicado: (2018) -
Synthesizing Images From Spatio-Temporal Representations Using Spike-Based Backpropagation
por: Roy, Deboleena, et al.
Publicado: (2019) -
Event-based backpropagation can compute exact gradients for spiking neural networks
por: Wunderlich, Timo C., et al.
Publicado: (2021) -
Efficient training of spiking neural networks with temporally-truncated local backpropagation through time
por: Guo, Wenzhe, et al.
Publicado: (2023) -
Event-Guided Image Super-Resolution Reconstruction
por: Guo, Guangsha, et al.
Publicado: (2023)