Cargando…

Developing a Deep Learning Model to Evaluate Bulbar Conjunctival Injection with Color Anterior Segment Photographs

The present research aims to evaluate the feasibility of a deep-learning model in identifying bulbar conjunctival injection grading. Methods: We collected 1401 color anterior segment photographs demonstrating the cornea and bulbar conjunctival. The ground truth was bulbar conjunctival injection scor...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Shanshan, Wang, Yuexin, Shi, Faqiang, Sun, Siman, Li, Xuemin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9867092/
https://www.ncbi.nlm.nih.gov/pubmed/36675643
http://dx.doi.org/10.3390/jcm12020715
Descripción
Sumario:The present research aims to evaluate the feasibility of a deep-learning model in identifying bulbar conjunctival injection grading. Methods: We collected 1401 color anterior segment photographs demonstrating the cornea and bulbar conjunctival. The ground truth was bulbar conjunctival injection scores labeled by human ophthalmologists. Two convolutional neural network-based models were constructed and trained. Accuracy, precision, recall, F1-score, Kappa, and the area under the curve (AUC) were calculated to evaluate the efficiency of the deep learning models. The micro-average and macro-average AUC values for model grading bulbar conjunctival injection were 0.98 and 0.98, respectively. The deep learning model achieved a high accuracy of 87.12%, a precision of 87.13%, a recall of 87.12%, an F1-score of 87.07%, and Cohen’s Kappa of 0.8153. The deep learning model demonstrated excellent performance in evaluating the severity of bulbar conjunctival injection, and it has the potential to help evaluate ocular surface diseases and determine disease progression and recovery.