Cargando…

Chemical Gas Telemetry System Based on Multispectral Infrared Imaging

Environmental monitoring, public safety, safe production, and other areas all benefit greatly from the use of gas detection technologies. The infrared image of a gas could be used to determine its type from a long distance in gas detection. The infrared image can show the spatial distribution of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Kun, Duan, Shaoli, Pang, Lingling, Li, Weilai, Yang, Zhixiong, Hu, Yaohang, Yu, Chunchao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9867235/
https://www.ncbi.nlm.nih.gov/pubmed/36668809
http://dx.doi.org/10.3390/toxics11010083
Descripción
Sumario:Environmental monitoring, public safety, safe production, and other areas all benefit greatly from the use of gas detection technologies. The infrared image of a gas could be used to determine its type from a long distance in gas detection. The infrared image can show the spatial distribution of the gas cloud and the background, allowing for long-distance and non-contact detection during safety production and hazardous chemical accident rescue. In this study, a gas detection system based on multispectral infrared imaging is devised, which can detect a variety of gases and determine the types of gas by separating the infrared radiation. It is made up of an imaging optical system, an uncooled focal plane detector, a filter controller, and a data gathering and processing system. The resolution of the infrared image is 640 × 512 and the working band of the system is 6.5~15 μm. The system can detect traces of pollutants in ambient air or gas clouds at higher concentrations. Ammonia, sulfur hexafluoride, methane, sulfur dioxide, and dimethyl methyl phosphonate were all successfully detected in real time. Ammonia clouds could be detected at a distance of 1124.5 m.