Cargando…

A Synthetic Data Generation Technique for Enhancement of Prediction Accuracy of Electric Vehicles Demand

In terms of electric vehicles (EVs), electric kickboards are crucial elements of smart transportation networks for short-distance travel that is risk-free, economical, and environmentally friendly. Forecasting the daily demand can improve the local service provider’s access to information and help t...

Descripción completa

Detalles Bibliográficos
Autores principales: Chatterjee, Subhajit, Byun, Yung-Cheol
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9867256/
https://www.ncbi.nlm.nih.gov/pubmed/36679392
http://dx.doi.org/10.3390/s23020594
_version_ 1784876297043836928
author Chatterjee, Subhajit
Byun, Yung-Cheol
author_facet Chatterjee, Subhajit
Byun, Yung-Cheol
author_sort Chatterjee, Subhajit
collection PubMed
description In terms of electric vehicles (EVs), electric kickboards are crucial elements of smart transportation networks for short-distance travel that is risk-free, economical, and environmentally friendly. Forecasting the daily demand can improve the local service provider’s access to information and help them manage their short-term supply more effectively. This study developed the forecasting model using real-time data and weather information from Jeju Island, South Korea. Cluster analysis under the rental pattern of the electric kickboard is a component of the forecasting processes. We cannot achieve noticeable results at first because of the low amount of training data. We require a lot of data to produce a solid prediction result. For the sake of the subsequent experimental procedure, we created synthetic time-series data using a generative adversarial networks (GAN) approach and combined the synthetic data with the original data. The outcomes have shown how the GAN-based synthetic data generation approach has the potential to enhance prediction accuracy. We employ an ensemble model to improve prediction results that cannot be achieved using a single regressor model. It is a weighted combination of several base regression models to one meta-regressor. To anticipate the daily demand in this study, we create an ensemble model by merging three separate base machine learning algorithms, namely CatBoost, Random Forest (RF), and Extreme Gradient Boosting (XGBoost). The effectiveness of the suggested strategies was assessed using some evaluation indicators. The forecasting outcomes demonstrate that mixing synthetic data with original data improves the robustness of daily demand forecasting and outperforms other models by generating more agreeable values for suggested assessment measures. The outcomes further show that applying ensemble techniques can reasonably increase the forecasting model’s accuracy for daily electric kickboard demand.
format Online
Article
Text
id pubmed-9867256
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-98672562023-01-22 A Synthetic Data Generation Technique for Enhancement of Prediction Accuracy of Electric Vehicles Demand Chatterjee, Subhajit Byun, Yung-Cheol Sensors (Basel) Article In terms of electric vehicles (EVs), electric kickboards are crucial elements of smart transportation networks for short-distance travel that is risk-free, economical, and environmentally friendly. Forecasting the daily demand can improve the local service provider’s access to information and help them manage their short-term supply more effectively. This study developed the forecasting model using real-time data and weather information from Jeju Island, South Korea. Cluster analysis under the rental pattern of the electric kickboard is a component of the forecasting processes. We cannot achieve noticeable results at first because of the low amount of training data. We require a lot of data to produce a solid prediction result. For the sake of the subsequent experimental procedure, we created synthetic time-series data using a generative adversarial networks (GAN) approach and combined the synthetic data with the original data. The outcomes have shown how the GAN-based synthetic data generation approach has the potential to enhance prediction accuracy. We employ an ensemble model to improve prediction results that cannot be achieved using a single regressor model. It is a weighted combination of several base regression models to one meta-regressor. To anticipate the daily demand in this study, we create an ensemble model by merging three separate base machine learning algorithms, namely CatBoost, Random Forest (RF), and Extreme Gradient Boosting (XGBoost). The effectiveness of the suggested strategies was assessed using some evaluation indicators. The forecasting outcomes demonstrate that mixing synthetic data with original data improves the robustness of daily demand forecasting and outperforms other models by generating more agreeable values for suggested assessment measures. The outcomes further show that applying ensemble techniques can reasonably increase the forecasting model’s accuracy for daily electric kickboard demand. MDPI 2023-01-04 /pmc/articles/PMC9867256/ /pubmed/36679392 http://dx.doi.org/10.3390/s23020594 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Chatterjee, Subhajit
Byun, Yung-Cheol
A Synthetic Data Generation Technique for Enhancement of Prediction Accuracy of Electric Vehicles Demand
title A Synthetic Data Generation Technique for Enhancement of Prediction Accuracy of Electric Vehicles Demand
title_full A Synthetic Data Generation Technique for Enhancement of Prediction Accuracy of Electric Vehicles Demand
title_fullStr A Synthetic Data Generation Technique for Enhancement of Prediction Accuracy of Electric Vehicles Demand
title_full_unstemmed A Synthetic Data Generation Technique for Enhancement of Prediction Accuracy of Electric Vehicles Demand
title_short A Synthetic Data Generation Technique for Enhancement of Prediction Accuracy of Electric Vehicles Demand
title_sort synthetic data generation technique for enhancement of prediction accuracy of electric vehicles demand
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9867256/
https://www.ncbi.nlm.nih.gov/pubmed/36679392
http://dx.doi.org/10.3390/s23020594
work_keys_str_mv AT chatterjeesubhajit asyntheticdatagenerationtechniqueforenhancementofpredictionaccuracyofelectricvehiclesdemand
AT byunyungcheol asyntheticdatagenerationtechniqueforenhancementofpredictionaccuracyofelectricvehiclesdemand
AT chatterjeesubhajit syntheticdatagenerationtechniqueforenhancementofpredictionaccuracyofelectricvehiclesdemand
AT byunyungcheol syntheticdatagenerationtechniqueforenhancementofpredictionaccuracyofelectricvehiclesdemand