Cargando…
Instantaneous Ablation Behavior of Laminated CFRP by High-Power Continuous-Wave Laser Irradiation in Supersonic Wind Tunnel
Experimental and numerical investigations of the instantaneous ablation behavior of laminated carbon fiber-reinforced polymer (CFRP) exposed to an intense continuous-wave (CW) laser in a supersonic wind tunnel are reported. We establish an in situ observation measurement in the experiments to examin...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9867284/ https://www.ncbi.nlm.nih.gov/pubmed/36676528 http://dx.doi.org/10.3390/ma16020790 |
_version_ | 1784876303992750080 |
---|---|
author | Ma, Te Wang, Jiangtao Song, Hongwei Wang, Ruixing Yuan, Wu |
author_facet | Ma, Te Wang, Jiangtao Song, Hongwei Wang, Ruixing Yuan, Wu |
author_sort | Ma, Te |
collection | PubMed |
description | Experimental and numerical investigations of the instantaneous ablation behavior of laminated carbon fiber-reinforced polymer (CFRP) exposed to an intense continuous-wave (CW) laser in a supersonic wind tunnel are reported. We establish an in situ observation measurement in the experiments to examine the instantaneous ablation behavior. The surface recession depth is calculated by using the Particle Image Velocimetry (PIV) method, taking the ply angle of laminated CFRP as a reference. A coupled thermal-fluid-ablation numerical model incorporating mechanisms of oxidation, sublimation, and thermomechanical erosion is developed to solve the ablation-through problem of multilayer materials. The results show that the laser ablation depth is related to the laser power density, airflow velocity and airflow mode. Thermomechanical erosion is the primary ablation mechanism when the surface temperature is relatively low and the cavity flow mode is a closed cavity flow. When the surface temperature reaches the sublimation of carbon and the airflow mode is transformed to open cavity flow, sublimation plays a dominant role and the ablation rate of thermomechanical erosion gradually decreases. |
format | Online Article Text |
id | pubmed-9867284 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98672842023-01-22 Instantaneous Ablation Behavior of Laminated CFRP by High-Power Continuous-Wave Laser Irradiation in Supersonic Wind Tunnel Ma, Te Wang, Jiangtao Song, Hongwei Wang, Ruixing Yuan, Wu Materials (Basel) Article Experimental and numerical investigations of the instantaneous ablation behavior of laminated carbon fiber-reinforced polymer (CFRP) exposed to an intense continuous-wave (CW) laser in a supersonic wind tunnel are reported. We establish an in situ observation measurement in the experiments to examine the instantaneous ablation behavior. The surface recession depth is calculated by using the Particle Image Velocimetry (PIV) method, taking the ply angle of laminated CFRP as a reference. A coupled thermal-fluid-ablation numerical model incorporating mechanisms of oxidation, sublimation, and thermomechanical erosion is developed to solve the ablation-through problem of multilayer materials. The results show that the laser ablation depth is related to the laser power density, airflow velocity and airflow mode. Thermomechanical erosion is the primary ablation mechanism when the surface temperature is relatively low and the cavity flow mode is a closed cavity flow. When the surface temperature reaches the sublimation of carbon and the airflow mode is transformed to open cavity flow, sublimation plays a dominant role and the ablation rate of thermomechanical erosion gradually decreases. MDPI 2023-01-13 /pmc/articles/PMC9867284/ /pubmed/36676528 http://dx.doi.org/10.3390/ma16020790 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ma, Te Wang, Jiangtao Song, Hongwei Wang, Ruixing Yuan, Wu Instantaneous Ablation Behavior of Laminated CFRP by High-Power Continuous-Wave Laser Irradiation in Supersonic Wind Tunnel |
title | Instantaneous Ablation Behavior of Laminated CFRP by High-Power Continuous-Wave Laser Irradiation in Supersonic Wind Tunnel |
title_full | Instantaneous Ablation Behavior of Laminated CFRP by High-Power Continuous-Wave Laser Irradiation in Supersonic Wind Tunnel |
title_fullStr | Instantaneous Ablation Behavior of Laminated CFRP by High-Power Continuous-Wave Laser Irradiation in Supersonic Wind Tunnel |
title_full_unstemmed | Instantaneous Ablation Behavior of Laminated CFRP by High-Power Continuous-Wave Laser Irradiation in Supersonic Wind Tunnel |
title_short | Instantaneous Ablation Behavior of Laminated CFRP by High-Power Continuous-Wave Laser Irradiation in Supersonic Wind Tunnel |
title_sort | instantaneous ablation behavior of laminated cfrp by high-power continuous-wave laser irradiation in supersonic wind tunnel |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9867284/ https://www.ncbi.nlm.nih.gov/pubmed/36676528 http://dx.doi.org/10.3390/ma16020790 |
work_keys_str_mv | AT mate instantaneousablationbehavioroflaminatedcfrpbyhighpowercontinuouswavelaserirradiationinsupersonicwindtunnel AT wangjiangtao instantaneousablationbehavioroflaminatedcfrpbyhighpowercontinuouswavelaserirradiationinsupersonicwindtunnel AT songhongwei instantaneousablationbehavioroflaminatedcfrpbyhighpowercontinuouswavelaserirradiationinsupersonicwindtunnel AT wangruixing instantaneousablationbehavioroflaminatedcfrpbyhighpowercontinuouswavelaserirradiationinsupersonicwindtunnel AT yuanwu instantaneousablationbehavioroflaminatedcfrpbyhighpowercontinuouswavelaserirradiationinsupersonicwindtunnel |